These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3235366)

  • 1. [Effect of cochlear processes in generating Jewett IV and V brain stem potential components].
    Janssen T; Böhnke F; Steinhoff HJ
    HNO; 1988 Dec; 36(12):511-5. PubMed ID: 3235366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correlation of the latency shift and brain stem potentials in basocochlear hearing loss and the time course of the click stimulus-induced evoked wave in the cochlea].
    Janssen T; Steinhoff HJ; Böhnke F
    Laryngorhinootologie; 1989 Jul; 68(7):379-82. PubMed ID: 2765050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brainstem auditory evoked potential monitoring: when is change in wave V significant?
    James ML; Husain AM
    Neurology; 2005 Nov; 65(10):1551-5. PubMed ID: 16301480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rarefaction-pressure problem of acoustic stimuli from the neuro-otologic viewpoint].
    Maurer K
    Laryngol Rhinol Otol (Stuttg); 1985 Mar; 64(3):169-73. PubMed ID: 3990480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory brainstem response audiometry in neonatal hydrocephalus.
    Edwards CG; Durieux-Smith A; Picton TW
    J Otolaryngol Suppl; 1985 Feb; 14():40-6. PubMed ID: 3864992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss.
    Prosser S; Arslan E
    Audiology; 1987; 26(3):179-87. PubMed ID: 3662941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogenic vestibular evoked potentials using a tone pip auditory stimulus.
    Papathanasiou ES; Zamba-Papanicolaou E; Pantziaris M; Kleopas K; Kyriakides T; Papacostas S; Pattichis C; Iliopoulos I; Piperidou C
    Electromyogr Clin Neurophysiol; 2004; 44(3):167-73. PubMed ID: 15125057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory brainstem and middle latency responses. I. Effect of response filtering and waveform identification. II. Threshold responses to a 500-HZ tone pip.
    Kavanagh KT; Harker LA; Tyler RS
    Ann Otol Rhinol Laryngol Suppl; 1984; 108():1-12. PubMed ID: 6421220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Use of methods of pattern recognition in the detection of evoked potentials].
    Moser M
    Laryngol Rhinol Otol (Stuttg); 1988 Mar; 67(3):118-22. PubMed ID: 3374224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist.
    McMahon CM; Patuzzi RB; Gibson WP; Sanli H
    Ear Hear; 2008 Jun; 29(3):314-25. PubMed ID: 18344874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Acoustic evoked potentials and topical diagnosis in the central nervous system].
    Maurer K
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1985 Sep; 16(3):148-54. PubMed ID: 3933954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Latency behavior of early acoustic evoked potentials in inner ear hearing loss].
    Gerull G; Janssen T; Mrowinski D; Thoma J
    Laryngol Rhinol Otol (Stuttg); 1985 Mar; 64(3):162-8. PubMed ID: 3990479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Response latency characteristics for ENT medical assessment of auditory brain stem evoked response].
    Janssen T; Steinhoff HJ; Böhnke F
    HNO; 1988 Aug; 36(8):318-23. PubMed ID: 3049476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory brain stem responses (ABR) in cat. Latency as a function of stimulus polarity, intensity and acoustic waveform.
    Tvete O; Haugsten P
    Scand Audiol Suppl; 1981; 13():35-8. PubMed ID: 6944776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the dual structure of the auditory brainstem response in dogs.
    Wilson WJ; Bailey KL; Balke CL; D'Arbe CL; Hoddinott BR; Bradley AP; Mills PC
    Clin Neurophysiol; 2006 Oct; 117(10):2211-20. PubMed ID: 16893679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment.
    Hazell JW; Jastreboff PJ
    J Otolaryngol; 1990 Feb; 19(1):1-5. PubMed ID: 2179573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory-evoked response in the clinically normal dog: early latency components.
    Sims MH; Moore RE
    Am J Vet Res; 1984 Oct; 45(10):2019-27. PubMed ID: 6497099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of the adult inner ear in the mouse following prenatal irradiation.
    Hultcrantz M
    Scand Audiol Suppl; 1985; 24():1-24. PubMed ID: 3879375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.