BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32353690)

  • 1. Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages.
    Kunitomo H; Ichikawa K
    Phys Med; 2020 May; 73():105-110. PubMed ID: 32353690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of anti-scatter grids for digital imaging with use of a direct-conversion flat-panel detector.
    Mizuta M; Sanada S; Akazawa H; Kasai T; Abe S; Ikeno Y; Mitou S
    Radiol Phys Technol; 2012 Jan; 5(1):46-52. PubMed ID: 21971637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the use of anti-scatter grids in adult knee radiography.
    Abela N; Guilherme Couto J; Zarb F; Mizzi D
    Radiography (Lond); 2022 Aug; 28(3):663-667. PubMed ID: 35623269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of X-ray scatter correction software on abdomen radiography in terms of image quality and radiation dose.
    Sayed M; Knapp KM; Fulford J; Heales C; Alqahtani SJ
    Radiography (Lond); 2024 Jul; 30(4):1125-1135. PubMed ID: 38797045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical note: a comparison of antiscatter grids for digital radiography.
    Court L; Yamazaki T
    Br J Radiol; 2004 Nov; 77(923):950-2. PubMed ID: 15507421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relationship between Radiation Quality and Image Quality in Digital Chest Radiography: Validation Study Using Human Soft Tissue-equivalent Phantom].
    Kawashima H; Ichikawa K; Kunitomo H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(3):255-262. PubMed ID: 33746173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical evaluation of prototype high-performance anti-scatter grids: potential for improved digital radiographic image quality.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2009 Jan; 54(2):N37-42. PubMed ID: 19098352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of anatomical structure on antiscatter grid performance in 2D: application to x-ray angiography and a prototype 29:1 ratio grid.
    Fetterly K; Bernhardt P; Schueler B
    Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38942002
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of anti-scatter grids on the image improvement factor in digital radiography for various phantom thicknesses and irradiation fields.
    Tanaka N; Yoon Y
    Phys Eng Sci Med; 2023 Sep; 46(3):1187-1192. PubMed ID: 37336831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2007 Aug; 52(16):4863-80. PubMed ID: 17671340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of grid geometry on the transmission properties of 2D grids for flat detectors in CBCT.
    Altunbas C; Alexeev T; Miften M; Kavanagh B
    Phys Med Biol; 2019 Nov; 64(22):225006. PubMed ID: 31585444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of radiographic parameters for paediatric cardiac angiography.
    Onnasch DG; Schemm A; Kramer HH
    Br J Radiol; 2004 Jun; 77(918):479-87. PubMed ID: 15151968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatter dose calculation for anti-scatter linear grids in mammography.
    Al Kafi MA; Maalej N; Naqvi AA
    Appl Radiat Isot; 2009 Oct; 67(10):1837-41. PubMed ID: 19632851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of grid performance using simple image quality tests.
    Bor D; Birgul O; Onal U; Olgar T
    J Med Phys; 2016; 41(1):21-8. PubMed ID: 27051166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new stationary grid, with grid lines aligned to pixel lines with submicron-order precision, to suppress grid artifacts.
    Kawashima H; Ichikawa K; Iida Y
    Med Phys; 2021 Sep; 48(9):4935-4943. PubMed ID: 34270103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical evaluation of a prototype ratio 29:1 grid for adult patient cardiovascular angiography imaging conditions.
    Fetterly KA; Schueler BA; Hindal MD; Miller DL
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34157690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of anti-scatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1151-63. PubMed ID: 8293261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo analysis of beam blocking grid design parameters: Scatter estimation and the importance of electron backscatter.
    Bootsma GJ; Ren L; Zhang H; Jin JY; Jaffray DA
    Med Phys; 2018 Mar; 45(3):1059-1070. PubMed ID: 29360154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.