These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32353779)
41. Microfiltration of vinasse: sustainable strategy to improve its nutritive potential. Amaral MC; Andrade LH; Neta LS; Magalhães NC; Santos FS; Mota GE; Carvalho RB Water Sci Technol; 2016; 73(6):1434-41. PubMed ID: 27003086 [TBL] [Abstract][Full Text] [Related]
42. Toxicity of two effluents from agricultural activity: Comparing the genotoxicity of sugar cane and orange vinasse. Garcia CFH; Souza RB; de Souza CP; Christofoletti CA; Fontanetti CS Ecotoxicol Environ Saf; 2017 Aug; 142():216-221. PubMed ID: 28412625 [TBL] [Abstract][Full Text] [Related]
43. Vinasse from sugarcane bagasse (hemicellulose) acid hydrolysate and molasses supplemented: biodegradability and toxicity. Candido JP; Almeida ÉC; de Oliveira Leite DN; Brienzo M; de Franceschi de Angelis D Ecotoxicology; 2021 Jul; 30(5):818-827. PubMed ID: 33856614 [TBL] [Abstract][Full Text] [Related]
44. Effect of sugar industry spentwash (diluted) on the characteristics of soil and sugarcane (Saccharum officinarum L.) growth in the subtropical environment of Sindh, Pakistan. Kaloi GM; Memon M; Memon KS; Ahmad S; Sheikh SA; Jamro GM Environ Monit Assess; 2017 Mar; 189(3):127. PubMed ID: 28243931 [TBL] [Abstract][Full Text] [Related]
45. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation. Aparicio JD; Benimeli CS; Almeida CA; Polti MA; Colin VL Chemosphere; 2017 Aug; 181():478-484. PubMed ID: 28460294 [TBL] [Abstract][Full Text] [Related]
46. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization. Akkajit P; DeSutter T; Tongcumpou C Environ Sci Process Impacts; 2013 May; 15(5):947-54. PubMed ID: 23511210 [TBL] [Abstract][Full Text] [Related]
47. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Lourenço KS; Rossetto R; Vitti AC; Montezano ZF; Soares JR; Sousa RM; do Carmo JB; Kuramae EE; Cantarella H Sci Total Environ; 2019 Feb; 650(Pt 1):1476-1486. PubMed ID: 30308834 [TBL] [Abstract][Full Text] [Related]
48. Adsorption of sugarcane vinasse effluent on bagasse fly ash: A parametric and kinetic study. Chingono KE; Sanganyado E; Bere E; Yalala B J Environ Manage; 2018 Oct; 224():182-190. PubMed ID: 30048849 [TBL] [Abstract][Full Text] [Related]
49. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N Suleiman AKA; Lourenço KS; Pitombo LM; Mendes LW; Roesch LFW; Pijl A; Carmo JB; Cantarella H; Kuramae EE Sci Total Environ; 2018 Aug; 631-632():1089-1099. PubMed ID: 29727935 [TBL] [Abstract][Full Text] [Related]
50. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse. Fernandes BS; Vieira JPF; Contesini FJ; Mantelatto PE; Zaiat M; Pradella JGDC Crit Rev Biotechnol; 2017 Dec; 37(8):1048-1061. PubMed ID: 28423943 [TBL] [Abstract][Full Text] [Related]
51. Vinasse as a substrate for inoculant culture and soil fertigation: Advancing the circular and green economy. Torres MA; Valdez AL; Angelicola MV; Raimondo EE; Pajot HF; Nieto-Peñalver CG Sci Total Environ; 2023 Aug; 887():164014. PubMed ID: 37182775 [TBL] [Abstract][Full Text] [Related]
52. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Dos Santos OAQ; Tavares OCH; García AC; Rossi CQ; de Moura OVT; Pereira W; da Silva Rodrigues Pinto LA; Berbara RLL; Pereira MG Sci Total Environ; 2020 Oct; 739():140063. PubMed ID: 32758952 [TBL] [Abstract][Full Text] [Related]
53. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil. Pittaway PA; Melland AR; Antille DL; Marchuk S J Environ Qual; 2018 May; 47(3):522-529. PubMed ID: 29864172 [TBL] [Abstract][Full Text] [Related]
54. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Marques SS; Nascimento IA; de Almeida PF; Chinalia FA Appl Biochem Biotechnol; 2013 Dec; 171(8):1933-43. PubMed ID: 24013860 [TBL] [Abstract][Full Text] [Related]
55. Impact of fertilizers on heavy metal loads in surface soils in Nzoia nucleus Estate Sugarcane Farms in Western Kenya. Omwoma S; Lalah JO; Ongeri DM; Wanyonyi MB Bull Environ Contam Toxicol; 2010 Dec; 85(6):602-8. PubMed ID: 21088824 [TBL] [Abstract][Full Text] [Related]
56. Unlocking Agronutrient Resources: Sorption Strategies for sugar-energy industry waste. Maria Antonio M; Faez R J Environ Manage; 2024 Apr; 356():120634. PubMed ID: 38518490 [TBL] [Abstract][Full Text] [Related]
57. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse. Mota VT; Araújo TA; Amaral MC Appl Biochem Biotechnol; 2015 Jul; 176(5):1402-12. PubMed ID: 25957273 [TBL] [Abstract][Full Text] [Related]
58. Development of a vinasse nutritive solution for hydroponics. dos Santos JD; Lopes da Silva AL; da Luz Costa J; Scheidt GN; Novak AC; Sydney EB; Soccol CR J Environ Manage; 2013 Jan; 114():8-12. PubMed ID: 23201600 [TBL] [Abstract][Full Text] [Related]
59. Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.). Akkajit P; DeSutter T; Tongcumpou C Environ Sci Process Impacts; 2014 Jan; 16(1):88-93. PubMed ID: 24217524 [TBL] [Abstract][Full Text] [Related]
60. Persistence of Fecal Contamination Indicators and Pathogens in Class B Biosolids Applied to Sugarcane Fields. Oliveira FC; de Faria MF; Bertoncini EI; Sato MIZ; Hachich EM; Guerrini IA; Passos JRS; James JN; Harrison RB; Feitoza TG; Chiaradia JJ; Abreu-Junior CH; Firme de Moraes LP J Environ Qual; 2019 Mar; 48(2):526-530. PubMed ID: 30951106 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]