BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32353930)

  • 1. Unidirectional All-Cellulose Composites from Flax via Controlled Impregnation with Ionic Liquid.
    Chen F; Sawada D; Hummel M; Sixta H; Budtova T
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32353930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-aramid composites by partial fiber dissolution.
    Zhang JM; Mousavi Z; Soykeabkaew N; Smith P; Nishino T; Peijs T
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):919-26. PubMed ID: 20356299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi Scale Analysis of the Retting and Process Effect on the Properties of Flax Bio-Based Composites.
    Ragoubi M; Lecoublet M; Khennache M; Poilane C; Leblanc N
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Preparation of Ionic Liquid Doped Chitosan/Cellulose-Based Electroactive Composites.
    Wang F; Xie C; Qian L; He B; Li J
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31818016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemp-based all-cellulose composites through ionic liquid promoted controllable dissolution and structural control.
    Chen K; Xu W; Ding Y; Xue P; Sheng P; Qiao H; He J
    Carbohydr Polym; 2020 May; 235():116027. PubMed ID: 32122518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications.
    Dhakal HN; Sain M
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31881745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.
    Iqbal HM; Kyazze G; Tron T; Keshavarz T
    Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on mechanical properties of flax fiber/expanded polystyrene waste composites.
    Mohammed A; Rao DN
    Heliyon; 2023 Mar; 9(3):e13310. PubMed ID: 36925531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.
    Ibrahim H; Farag M; Megahed H; Mehanny S
    Carbohydr Polym; 2014 Jan; 101():11-9. PubMed ID: 24299743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Dissolution Time on the Properties of All-Cellulose Composites Obtained from Oil Palm Empty Fruit Bunch.
    Jaafar MZ; Mohd Ridzuan FF; Mohamad Kassim MH; Abu F
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid.
    Wang G; Guo J; Zhuang L; Wang Y; Xu B
    Int J Biol Macromol; 2015 May; 76():70-9. PubMed ID: 25727745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Fabrication of 100% Bio-based and Degradable Ternary Cellulose/PHBV/PLA Composites.
    Qiang T; Wang J; Wolcott MP
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29495315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of Flax and Pineapple Leaf Fiber Reinforced Poly(butylene succinate): Effect of Fiber Content on Mechanical Properties.
    Amornsakchai T; Duangsuwan S; Mougin K; Goh KL
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces.
    Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C
    J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid.
    Shibata M; Teramoto N; Nakamura T; Saitoh Y
    Carbohydr Polym; 2013 Nov; 98(2):1532-9. PubMed ID: 24053836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of cell wall non-cellulosic and cellulosic polymers on the mechanical properties of flax fibre bundles.
    Gautreau M; Durand S; Paturel A; Le Gall S; Foucat L; Falourd X; Novales B; Ralet MC; Chevallier S; Kervoelen A; Bourmaud A; Guillon F; Beaugrand J
    Carbohydr Polym; 2022 Sep; 291():119599. PubMed ID: 35698346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose.
    Yang X; Berthold F; Berglund LA
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10310-10319. PubMed ID: 30762342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of all cellulose composite with excellent mechanical and antibacterial properties via partial dissolution of corn-stalk biomass.
    Li B; Liu G; Tang X; Zhang H; Gao X
    Int J Biol Macromol; 2023 Feb; 228():89-98. PubMed ID: 36565828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Loaded Cellulose/Poly (butylene succinate) Sustainable Composites for Woody-Like Advanced Materials Application.
    Platnieks O; Gaidukovs S; Barkane A; Gaidukova G; Grase L; Thakur VK; Filipova I; Fridrihsone V; Skute M; Laka M
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.