These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 32354110)
1. Thermal Performance of Mortars Based on Different Binders and Containing a Novel Sustainable Phase Change Material (PCM). Sarcinella A; Aguiar JLB; Lettieri M; Cunha S; Frigione M Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32354110 [TBL] [Abstract][Full Text] [Related]
2. Applications of Sustainable Polymer-Based Phase Change Materials in Mortars Composed by Different Binders. Frigione M; Lettieri M; Sarcinella A; Barroso de Aguiar JL Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731461 [TBL] [Abstract][Full Text] [Related]
3. PCM Cement-Lime Mortars for Enhanced Energy Efficiency of Multilayered Building Enclosures under Different Climatic Conditions. Guardia C; Barluenga G; Palomar I Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32933062 [TBL] [Abstract][Full Text] [Related]
4. Physical Properties of Eco-Sustainable Form-Stable Phase Change Materials Included in Mortars Suitable for Buildings Located in Different Continental Regions. Sarcinella A; de Aguiar JLB; Frigione M Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407830 [TBL] [Abstract][Full Text] [Related]
5. Physical Properties of an Eco-Sustainable, Form-Stable Phase Change Material Included in Aerial-Lime-Based Mortar Intended for Different Climates. Sarcinella A; Aguiar JLB; Frigione M Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161137 [TBL] [Abstract][Full Text] [Related]
6. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars. Frigione M; Lettieri M; Sarcinella A Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30999615 [TBL] [Abstract][Full Text] [Related]
7. Effect of PCM on the Hydration Process of Cement-Based Mixtures: A Novel Thermo-Mechanical Investigation. Fabiani C; Pisello AL; D'Alessandro A; Ubertini F; Cabeza LF; Cotana F Materials (Basel); 2018 May; 11(6):. PubMed ID: 29882857 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
9. Phase Change Material Evolution in Thermal Energy Storage Systems for the Building Sector, with a Focus on Ground-Coupled Heat Pumps. Barbi S; Barbieri F; Marinelli S; Rimini B; Merchiori S; Bottarelli M; Montorsi M Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160609 [TBL] [Abstract][Full Text] [Related]
10. Enhancing thermal energy storage properties of blend phase change materials using beeswax. Belgacem SB; Trigui A; Jedidi I; Loukil MS; Calmunger M; Abdmouleh M Environ Sci Pollut Res Int; 2024 Aug; 31(39):51504-51520. PubMed ID: 39112900 [TBL] [Abstract][Full Text] [Related]
11. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material. Nabwey HA; Tony MA Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836276 [TBL] [Abstract][Full Text] [Related]
12. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge-Discharge Cycles. Yang Q; Xiong J; Mao G; Zhang Y Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687647 [TBL] [Abstract][Full Text] [Related]
13. Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review. Koželj R; Osterman E; Leonforte F; Del Pero C; Miglioli A; Zavrl E; Stropnik R; Aste N; Stritih U Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635169 [TBL] [Abstract][Full Text] [Related]
14. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition. Trigui A; Abdelmouleh M; Boudaya C RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091 [TBL] [Abstract][Full Text] [Related]
15. Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance. Montanari C; Li Y; Chen H; Yan M; Berglund LA ACS Appl Mater Interfaces; 2019 Jun; 11(22):20465-20472. PubMed ID: 31062954 [TBL] [Abstract][Full Text] [Related]
16. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles. Yang H; Memon SA; Bao X; Cui H; Li D Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772752 [TBL] [Abstract][Full Text] [Related]
17. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES). Ferrer G; Barreneche C; Solé A; Juliá JE; Cabeza LF Recent Pat Nanotechnol; 2017 Jul; 11(2):101-108. PubMed ID: 28049393 [TBL] [Abstract][Full Text] [Related]
18. Cooling System with PCM Storage for an Office Building: Experimental Investigation Aided by a Model of the Office Thermal Dynamics. Karwacki J Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799671 [TBL] [Abstract][Full Text] [Related]
19. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Höhlein S; König-Haagen A; Brüggemann D Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772806 [TBL] [Abstract][Full Text] [Related]
20. Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Galvagnini F; Dorigato A; Fambri L; Fredi G; Pegoretti A Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]