BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 32354198)

  • 1. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors.
    Baci D; Bosi A; Gallazzi M; Rizzi M; Noonan DM; Poggi A; Bruno A; Mortara L
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the immune microenvironment for ovarian cancer therapy.
    Blanc-Durand F; Clemence Wei Xian L; Tan DSP
    Front Immunol; 2023; 14():1328651. PubMed ID: 38164130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ovarian Cancer Immunotherapy: Turning up the Heat.
    Ghisoni E; Imbimbo M; Zimmermann S; Valabrega G
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer.
    Hartl CA; Bertschi A; Puerto RB; Andresen C; Cheney EM; Mittendorf EA; Guerriero JL; Goldberg MS
    J Immunother Cancer; 2019 Jul; 7(1):199. PubMed ID: 31362778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationale for anti-CD137 cancer immunotherapy.
    Makkouk A; Chester C; Kohrt HE
    Eur J Cancer; 2016 Feb; 54():112-119. PubMed ID: 26751393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-mediated TGFBR2 knockout renders human ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β signaling.
    Fix SM; Forget MA; Sakellariou-Thompson D; Wang Y; Griffiths TM; Lee M; Haymaker CL; Dominguez AL; Basar R; Reyes C; Kumar S; Meyer LA; Hwu P; Bernatchez C; Jazaeri AA
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35882447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFMO and 5-Azacytidine Increase M1 Macrophages in the Tumor Microenvironment of Murine Ovarian Cancer.
    Travers M; Brown SM; Dunworth M; Holbert CE; Wiehagen KR; Bachman KE; Foley JR; Stone ML; Baylin SB; Casero RA; Zahnow CA
    Cancer Res; 2019 Jul; 79(13):3445-3454. PubMed ID: 31088836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer.
    Zhang S; Zhao J; Bai X; Handley M; Shan F
    Int Immunopharmacol; 2021 Feb; 91():107318. PubMed ID: 33383444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity.
    Santos JM; Heiniö C; Cervera-Carrascon V; Quixabeira DCA; Siurala M; Havunen R; Butzow R; Zafar S; de Gruijl T; Lassus H; Kanerva A; Hemminki A
    J Immunother Cancer; 2020 Jan; 8(1):. PubMed ID: 31940588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multisite Tumor Sampling Reveals Extensive Heterogeneity of Tumor and Host Immune Response in Ovarian Cancer.
    Lakis S; Kotoula V; Koliou GA; Efstratiou I; Chrisafi S; Papanikolaou A; Zebekakis P; Fountzilas G
    Cancer Genomics Proteomics; 2020; 17(5):529-541. PubMed ID: 32859631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting tumor microenvironment in ovarian cancer: Premise and promise.
    Jiang Y; Wang C; Zhou S
    Biochim Biophys Acta Rev Cancer; 2020 Apr; 1873(2):188361. PubMed ID: 32234508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer.
    Greppi M; Tabellini G; Patrizi O; Candiani S; Decensi A; Parolini S; Sivori S; Pesce S; Paleari L; Marcenaro E
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer.
    Luo X; Xu J; Yu J; Yi P
    Front Immunol; 2021; 12():692360. PubMed ID: 34248988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical significance of the immune microenvironment in ovarian cancer patients.
    Yang L; Wang S; Zhang Q; Pan Y; Lv Y; Chen X; Zuo Y; Hao D
    Mol Omics; 2018 Oct; 14(5):341-351. PubMed ID: 30129640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor-associated macrophage-targeted therapeutics in ovarian cancer.
    An Y; Yang Q
    Int J Cancer; 2021 Jul; 149(1):21-30. PubMed ID: 33231290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer.
    Ojalvo LS; Thompson ED; Wang TL; Meeker AK; Shih IM; Fader AN; Cimino-Mathews A; Emens LA
    Hum Pathol; 2018 Apr; 74():135-147. PubMed ID: 29288043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of neoadjuvant chemotherapy on the immune microenvironment in advanced epithelial ovarian cancer: Prognostic and therapeutic implications.
    Khairallah AS; Genestie C; Auguste A; Leary A
    Int J Cancer; 2018 Jul; 143(1):8-15. PubMed ID: 29218796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ovarian Cancer-Intrinsic Fatty Acid Synthase Prevents Anti-tumor Immunity by Disrupting Tumor-Infiltrating Dendritic Cells.
    Jiang L; Fang X; Wang H; Li D; Wang X
    Front Immunol; 2018; 9():2927. PubMed ID: 30619288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine in cancer immunology and immunotherapy. Current status and new perspectives.
    Sarasola MP; Táquez Delgado MA; Nicoud MB; Medina VA
    Pharmacol Res Perspect; 2021 Oct; 9(5):e00778. PubMed ID: 34609067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.