These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32354210)

  • 21. Anatase TiO
    Yan B; Wan D; Chi X; Li C; Motapothula MR; Hooda S; Yang P; Huang Z; Zeng S; Ramesh AG; Pennycook SJ; Rusydi A; Ariando ; Martin J; Venkatesan T
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38201-38208. PubMed ID: 30362340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial Analysis of Anatase TiO
    Lei L; Sang L; Zhang Y; Gao Y
    ACS Omega; 2020 Feb; 5(7):3522-3532. PubMed ID: 32118167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial Adsorption and Electron Properties of Water Molecule/Cluster on Anatase TiO
    Meng X; Li X; Zhang Q; Zheng R; Wu L; Cao F
    Langmuir; 2022 Jan; 38(3):1057-1066. PubMed ID: 35015544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of Molecular Hydrogen Produced from Bridging Hydroxyls on Anatase TiO
    Deskins NA; Kimmel GA; Petrik NG
    J Phys Chem Lett; 2020 Nov; 11(21):9289-9297. PubMed ID: 33090788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces.
    Selcuk S; Selloni A
    Nat Mater; 2016 Oct; 15(10):1107-12. PubMed ID: 27322821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scenarios of polaron-involved molecular adsorption on reduced TiO
    Cao Y; Yu M; Qi S; Huang S; Wang T; Xu M; Hu S; Yan S
    Sci Rep; 2017 Jul; 7(1):6148. PubMed ID: 28733624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Water Adsorption on Carrier Trapping Dynamics at the Surface of Anatase TiO2 Nanoparticles.
    Shirai K; Sugimoto T; Watanabe K; Haruta M; Kurata H; Matsumoto Y
    Nano Lett; 2016 Feb; 16(2):1323-7. PubMed ID: 26806190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of Plasmonic Polarons in Highly Electron-Doped Anatase TiO
    Ma X; Cheng Z; Tian M; Liu X; Cui X; Huang Y; Tan S; Yang J; Wang B
    Nano Lett; 2021 Jan; 21(1):430-436. PubMed ID: 33290081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and reactivity of a water-covered anatase TiO
    Lang X; Liang Y; Zhang J; Li L; Cao L; Zhang H
    Phys Chem Chem Phys; 2020 Jan; 22(3):1371-1380. PubMed ID: 31854404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adatom surface diffusion of catalytic metals on the anatase TiO
    Alghannam A; Muhich CL; Musgrave CB
    Phys Chem Chem Phys; 2017 Feb; 19(6):4541-4552. PubMed ID: 28124047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ag
    López-Caballero P; Miret-Artés S; Mitrushchenkov AO; de Lara-Castells MP
    J Chem Phys; 2020 Oct; 153(16):164702. PubMed ID: 33138404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.
    Srinivasadesikan V; Raghunath P; Lin MC
    J Mol Model; 2015 Jun; 21(6):142. PubMed ID: 25966674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface.
    Scheiber P; Fidler M; Dulub O; Schmid M; Diebold U; Hou W; Aschauer U; Selloni A
    Phys Rev Lett; 2012 Sep; 109(13):136103. PubMed ID: 23030108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Density functional theory study of formic acid adsorption on anatase TiO2(001): geometries, energetics, and effects of coverage, hydration, and reconstruction.
    Gong XQ; Selloni A; Vittadini A
    J Phys Chem B; 2006 Feb; 110(6):2804-11. PubMed ID: 16471889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defect-Electron Spreading on the TiO2(110) Semiconductor Surface by Water Adsorption.
    Zhang Z; Cao K; Yates JT
    J Phys Chem Lett; 2013 Feb; 4(4):674-9. PubMed ID: 26281884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methanol Conversion into Dimethyl Ether on the Anatase TiO2(001) Surface.
    Xiong F; Yu YY; Wu Z; Sun G; Ding L; Jin Y; Gong XQ; Huang W
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):623-8. PubMed ID: 26593777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of surface structure, oxygen defects, and hydration in the adsorption of CO(2) on low-index ZnGa(2)O(4) surfaces: a first-principles investigation.
    Jia C; Fan W; Cheng X; Zhao X; Sun H; Li P; Lin N
    Phys Chem Chem Phys; 2014 Apr; 16(16):7538-47. PubMed ID: 24632683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Verification of Photoelectrochemical Water Oxidation Using Nanocrystalline TiO2 Electrodes.
    Yanagida S; Yanagisawa S; Yamashita K; Jono R; Segawa H
    Molecules; 2015 May; 20(6):9732-44. PubMed ID: 26023936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides.
    Zhang L; Chu W; Zhao C; Zheng Q; Prezhdo OV; Zhao J
    J Phys Chem Lett; 2021 Mar; 12(9):2191-2198. PubMed ID: 33630612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab Initio Studies of Anatase TiO2 (101) Surface-supported Au8 Clusters.
    Mikolajczyk A; Pinto HP; Gajewicz A; Puzyn T; Leszczynski J
    Curr Top Med Chem; 2015; 15(18):1859-67. PubMed ID: 25961526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.