These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of Water Contamination on the SEI Formation in Li-Ion Cells: An Operando EQCM-D Study. Kitz PG; Novák P; Berg EJ ACS Appl Mater Interfaces; 2020 Apr; 12(13):15934-15942. PubMed ID: 32141729 [TBL] [Abstract][Full Text] [Related]
3. Operando EQCM-D with Simultaneous in Situ EIS: New Insights into Interphase Formation in Li Ion Batteries. Kitz PG; Lacey MJ; Novák P; Berg EJ Anal Chem; 2019 Feb; 91(3):2296-2303. PubMed ID: 30569698 [TBL] [Abstract][Full Text] [Related]
4. Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode. Lee CH; Dura JA; LeBar A; DeCaluwe SC J Power Sources; 2019; 412():. PubMed ID: 32831460 [TBL] [Abstract][Full Text] [Related]
5. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Li Y; Leung K; Qi Y Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438 [TBL] [Abstract][Full Text] [Related]
6. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Zhou Y; Su M; Yu X; Zhang Y; Wang JG; Ren X; Cao R; Xu W; Baer DR; Du Y; Borodin O; Wang Y; Wang XL; Xu K; Xu Z; Wang C; Zhu Z Nat Nanotechnol; 2020 Mar; 15(3):224-230. PubMed ID: 31988500 [TBL] [Abstract][Full Text] [Related]
7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
8. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567 [TBL] [Abstract][Full Text] [Related]
9. Effect of Water Concentration in LiPF Ha Y; Stetson C; Harvey SP; Teeter G; Tremolet de Villers BJ; Jiang CS; Schnabel M; Stradins P; Burrell A; Han SD ACS Appl Mater Interfaces; 2020 Nov; 12(44):49563-49573. PubMed ID: 33094999 [TBL] [Abstract][Full Text] [Related]
10. Operando Investigation of Solid Electrolyte Interphase Formation, Dynamic Evolution, and Degradation During Lithium Plating/Stripping. Krumov MR; Lang S; Johnson L; Abruña HD ACS Appl Mater Interfaces; 2023 Oct; 15(40):47692-47703. PubMed ID: 37751476 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes. Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823 [TBL] [Abstract][Full Text] [Related]
13. In situ quantification of interphasial chemistry in Li-ion battery. Liu T; Lin L; Bi X; Tian L; Yang K; Liu J; Li M; Chen Z; Lu J; Amine K; Xu K; Pan F Nat Nanotechnol; 2019 Jan; 14(1):50-56. PubMed ID: 30420761 [TBL] [Abstract][Full Text] [Related]
14. Nanostructural and Electrochemical Evolution of the Solid-Electrolyte Interphase on CuO Nanowires Revealed by Cryogenic-Electron Microscopy and Impedance Spectroscopy. Huang W; Boyle DT; Li Y; Li Y; Pei A; Chen H; Cui Y ACS Nano; 2019 Jan; 13(1):737-744. PubMed ID: 30589528 [TBL] [Abstract][Full Text] [Related]
15. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Mehdi BL; Qian J; Nasybulin E; Park C; Welch DA; Faller R; Mehta H; Henderson WA; Xu W; Wang CM; Evans JE; Liu J; Zhang JG; Mueller KT; Browning ND Nano Lett; 2015 Mar; 15(3):2168-73. PubMed ID: 25705928 [TBL] [Abstract][Full Text] [Related]
16. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries. Wu Q; McDowell MT; Qi Y J Am Chem Soc; 2023 Feb; 145(4):2473-2484. PubMed ID: 36689617 [TBL] [Abstract][Full Text] [Related]
17. Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries. Dachraoui W; Pauer R; Battaglia C; Erni R ACS Nano; 2023 Oct; 17(20):20434-20444. PubMed ID: 37831942 [TBL] [Abstract][Full Text] [Related]
18. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon. Soto FA; Yan P; Engelhard MH; Marzouk A; Wang C; Xu G; Chen Z; Amine K; Liu J; Sprenkle VL; El-Mellouhi F; Balbuena PB; Li X Adv Mater; 2017 May; 29(18):. PubMed ID: 28266753 [TBL] [Abstract][Full Text] [Related]
19. Effects of Lithium Bis(oxalate)borate Electrolyte Additive on the Formation of a Solid Electrolyte Interphase on Amorphous Carbon Electrodes by Kawaura H; Harada M; Kondo Y; Mizutani M; Takahashi N; Yamada NL ACS Appl Mater Interfaces; 2022 Jun; 14(21):24526-24535. PubMed ID: 35585036 [TBL] [Abstract][Full Text] [Related]
20. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. Lindgren F; Xu C; Niedzicki L; Marcinek M; Gustafsson T; Björefors F; Edström K; Younesi R ACS Appl Mater Interfaces; 2016 Jun; 8(24):15758-66. PubMed ID: 27220376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]