These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3235463)
1. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. Heughebaert M; LeGeros RZ; Gineste M; Guilhem A; Bonel G J Biomed Mater Res; 1988 Dec; 22(3 Suppl):257-68. PubMed ID: 3235463 [TBL] [Abstract][Full Text] [Related]
2. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Daculsi G; LeGeros RZ; Heughebaert M; Barbieux I Calcif Tissue Int; 1990 Jan; 46(1):20-7. PubMed ID: 2153039 [TBL] [Abstract][Full Text] [Related]
3. Mineralization and calcium fixation within a porous apatitic ceramic material after implantation in the femur of rabbits. Krajewski A; Ravaglioli A; Mongiorgi R; Moroni A J Biomed Mater Res; 1988 Jun; 22(6):445-57. PubMed ID: 2842343 [TBL] [Abstract][Full Text] [Related]
4. Crystallographic structure and surface morphology of sintered carbonated apatites. Ellies LG; Nelson DG; Featherstone JD J Biomed Mater Res; 1988 Jun; 22(6):541-53. PubMed ID: 3410872 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility of zirconia dispersed hydroxyapatite ceramics. Suzuki O; Suda A; Sato T; Takagi M; Osanai T Nihon Seikeigeka Gakkai Zasshi; 1990 Apr; 64(4):249-59. PubMed ID: 2166117 [TBL] [Abstract][Full Text] [Related]
6. Inorganic phase composition of remineralisation in porous CaP ceramics. Zyman Z; Ivanov I; Glushko V; Dedukh N; Malyshkina S Biomaterials; 1998 Jul; 19(14):1269-73. PubMed ID: 9720890 [TBL] [Abstract][Full Text] [Related]
7. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site. Rohanizadeh R; Trécant-Viana M; Daculsi G Calcif Tissue Int; 1999 May; 64(5):430-6. PubMed ID: 10203420 [TBL] [Abstract][Full Text] [Related]
8. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Kurashina K; Kurita H; Wu Q; Ohtsuka A; Kobayashi H Biomaterials; 2002 Jan; 23(2):407-12. PubMed ID: 11761160 [TBL] [Abstract][Full Text] [Related]
9. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone. Osseo-coalescence versus osseo-integration. Daculsi G; LeGeros RZ; Deudon C Scanning Microsc; 1990 Jun; 4(2):309-14. PubMed ID: 2402606 [TBL] [Abstract][Full Text] [Related]
10. Micro-observation and characterization of bonding between bone and HA-glass-titanium functionally gradient composite. Maruno S; Itoh H; Ban S; Iwata H; Ishikawa T Biomaterials; 1991 Mar; 12(2):225-30. PubMed ID: 1878457 [TBL] [Abstract][Full Text] [Related]
11. Surface reactions of calcium phosphate ceramics to various solutions. Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873 [TBL] [Abstract][Full Text] [Related]
12. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128 [TBL] [Abstract][Full Text] [Related]
13. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. Yuan H; van Blitterswijk CA; de Groot K; de Bruijn JD J Biomed Mater Res A; 2006 Jul; 78(1):139-47. PubMed ID: 16619253 [TBL] [Abstract][Full Text] [Related]
14. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Eggli PS; Müller W; Schenk RK Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207 [TBL] [Abstract][Full Text] [Related]
15. Apatite formation on the surface of Ceravital-type glass-ceramic in the body. Ohtsuki C; Kushitani H; Kokubo T; Kotani S; Yamamuro T J Biomed Mater Res; 1991 Nov; 25(11):1363-70. PubMed ID: 1797808 [TBL] [Abstract][Full Text] [Related]
16. Bonding behavior between two bioactive ceramics in vivo. Kitsugi T; Yamamuro T; Nakamura T; Kokubo T; Takagi M; Shibuya T; Takeuchi H; Ono M J Biomed Mater Res; 1987 Sep; 21(9):1109-23. PubMed ID: 3667637 [TBL] [Abstract][Full Text] [Related]
17. [The interface between hydroxyapatite ceramic and newly formed bone in scanning electron microscopy]. Brill W; Katthagen BD Z Orthop Ihre Grenzgeb; 1987; 125(2):183-7. PubMed ID: 3039750 [TBL] [Abstract][Full Text] [Related]
18. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831 [TBL] [Abstract][Full Text] [Related]
19. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Yubao L; Klein CP; Zhang X; de Groot K Biomaterials; 1994 Aug; 15(10):835-41. PubMed ID: 7986949 [TBL] [Abstract][Full Text] [Related]
20. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo]. Duan Y; Wu Y; Wang C; Chen J; Zhang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]