These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3235463)
41. The influence of sintering temperature on the porosity and strength of porous hydroxyapatite ceramics. Rusnah M; Andanastuti M; Idris B Med J Malaysia; 2004 May; 59 Suppl B():158-9. PubMed ID: 15468866 [TBL] [Abstract][Full Text] [Related]
42. Aging test and dynamic fatigue test of apatite-wollastonite-containing glass ceramics and dense hydroxyapatite. Kitsugi T; Yamamuro T; Nakamura T; Kakutani Y; Hayashi T; Ito S; Kokubo T; Takagi M; Shibuya T J Biomed Mater Res; 1987 Apr; 21(4):467-84. PubMed ID: 3034911 [TBL] [Abstract][Full Text] [Related]
43. Synthesis of nano-sized hydroxyapatite. Tan SA; Ahmad Fauzi MN; Luay BH; Radzali O Med J Malaysia; 2004 May; 59 Suppl B():162-3. PubMed ID: 15468868 [TBL] [Abstract][Full Text] [Related]
44. The biocompatibility of hydroxyapatite ceramic: a study of retrieved human middle ear implants. van Blitterswijk CA; Hesseling SC; Grote JJ; Koerten HK; de Groot K J Biomed Mater Res; 1990 Apr; 24(4):433-53. PubMed ID: 2161412 [TBL] [Abstract][Full Text] [Related]
45. A comparison of fibrous tissue formation surrounding intraperitoneal and subcutaneous implantation of ALCAP, HA, and TCP ceramic devices. Butler K; Benghuzzi H; Tucci M; Cason Z Biomed Sci Instrum; 1997; 34():18-23. PubMed ID: 9603006 [TBL] [Abstract][Full Text] [Related]
46. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. Neo M; Kotani S; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T; Bando Y J Biomed Mater Res; 1992 Nov; 26(11):1419-32. PubMed ID: 1447227 [TBL] [Abstract][Full Text] [Related]
47. Comparative histocompatibility testing of seven calcium phosphate ceramics. Winter M; Griss P; de Groot K; Tagai H; Heimke G; von Dijk HJ; Sawai K Biomaterials; 1981 Jul; 2(3):159-60. PubMed ID: 6268208 [TBL] [Abstract][Full Text] [Related]
48. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Schnettler R; Alt V; Dingeldein E; Pfefferle HJ; Kilian O; Meyer C; Heiss C; Wenisch S Biomaterials; 2003 Nov; 24(25):4603-8. PubMed ID: 12951003 [TBL] [Abstract][Full Text] [Related]
49. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Wang J; Chen W; Li Y; Fan S; Weng J; Zhang X Biomaterials; 1998 Aug; 19(15):1387-92. PubMed ID: 9758038 [TBL] [Abstract][Full Text] [Related]
50. Calcium phosphate precipitation on the surface of HA-G-Ti composite under physiologic conditions. Ban S; Maruno S; Iwata H; Itoh H J Biomed Mater Res; 1994 Jan; 28(1):65-71. PubMed ID: 8126030 [TBL] [Abstract][Full Text] [Related]
51. Osteoinduction of Calcium Phosphate Ceramics in Four Kinds of Animals for 1 Year: Dog, Rabbit, Rat, and Mouse. Cheng L; Wang T; Zhu J; Cai P Transplant Proc; 2016 May; 48(4):1309-14. PubMed ID: 27320611 [TBL] [Abstract][Full Text] [Related]
52. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Vignoles M; Bonel G; Young RA Calcif Tissue Int; 1987 Feb; 40(2):64-70. PubMed ID: 3032379 [TBL] [Abstract][Full Text] [Related]
53. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. Bagambisa FB; Joos U; Schilli W J Biomed Mater Res; 1993 Aug; 27(8):1047-55. PubMed ID: 8408117 [TBL] [Abstract][Full Text] [Related]
54. Biodegradation behavior of various calcium phosphate materials in bone tissue. Klein CP; Driessen AA; de Groot K; van den Hooff A J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838 [TBL] [Abstract][Full Text] [Related]
55. [Porous hydroxylapatite ceramics with homologous osteoblasts from cell cultures for bone replacement]. Lang H; Mertens T Dtsch Z Mund Kiefer Gesichtschir; 1991; 15(1):64-8. PubMed ID: 1814669 [TBL] [Abstract][Full Text] [Related]
56. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Joschek S; Nies B; Krotz R; Göferich A Biomaterials; 2000 Aug; 21(16):1645-58. PubMed ID: 10905406 [TBL] [Abstract][Full Text] [Related]
57. Use of dual-energy X-ray absorptiometry (DEXA) to follow mineral content changes in small ceramic implants in rats. Mosheiff R; Klein BY; Leichter I; Chaimsky G; Nyska A; Peyser A; Segal D Biomaterials; 1992; 13(7):462-6. PubMed ID: 1321675 [TBL] [Abstract][Full Text] [Related]
58. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo. Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959 [TBL] [Abstract][Full Text] [Related]
59. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic. Shareef MY; Messer PF; van Noort R Biomaterials; 1993; 14(1):69-75. PubMed ID: 8381034 [TBL] [Abstract][Full Text] [Related]
60. Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Imaizumi H; Sakurai M; Kashimoto O; Kikawa T; Suzuki O Calcif Tissue Int; 2006 Jan; 78(1):45-54. PubMed ID: 16397737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]