These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32354703)
1. Comparative RNAseq Analysis of the Insect-Pathogenic Fungus Iwanicki NS; Júnior ID; Eilenberg J; De Fine Licht HH G3 (Bethesda); 2020 Jul; 10(7):2141-2157. PubMed ID: 32354703 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomics of growth metabolism and virulence reveal distinct morphogenic profiles of yeast-like cells and hyphae of the fungus Metarhizium rileyi. Sant Anna Iwanicki N; Delalibera Júnior I; de Carvalho LLB; Eilenberg J; De Fine Licht HH Fungal Genet Biol; 2023 Jan; 164():103766. PubMed ID: 36513262 [TBL] [Abstract][Full Text] [Related]
3. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
4. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Wang C; St Leger RJ Eukaryot Cell; 2007 May; 6(5):808-16. PubMed ID: 17337634 [TBL] [Abstract][Full Text] [Related]
5. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. Iwanicki NSA; Mascarin GM; Moreno SG; Eilenberg J; Delalibera Júnior I World J Microbiol Biotechnol; 2020 Apr; 36(5):71. PubMed ID: 32350696 [TBL] [Abstract][Full Text] [Related]
6. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. Pattemore JA; Hane JK; Williams AH; Wilson BA; Stodart BJ; Ash GJ BMC Genomics; 2014 Aug; 15(1):660. PubMed ID: 25102932 [TBL] [Abstract][Full Text] [Related]
9. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Fang W; Pei Y; Bidochka MJ Microbiology (Reading); 2007 Apr; 153(Pt 4):1017-1025. PubMed ID: 17379711 [TBL] [Abstract][Full Text] [Related]
10. Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Huang W; Huang P; Yü D; Li C; Huang S; Qi P; Huang S; Keyhani NO; Huang Z Microbiol Spectr; 2022 Dec; 10(6):e0076022. PubMed ID: 36314906 [TBL] [Abstract][Full Text] [Related]
11. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Jackson MA; Jaronski ST Mycol Res; 2009 Aug; 113(Pt 8):842-50. PubMed ID: 19358886 [TBL] [Abstract][Full Text] [Related]
12. Virulence of Some Entomopathogenic Fungi Isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Aulacaspis tubercularis (Hemiptera: Diaspididae)and Icerya seychellarum (Hemiptera: Monophlebidae) on Mango Crop. Sayed AMM; Dunlap CA J Econ Entomol; 2019 Dec; 112(6):2584-2596. PubMed ID: 31329233 [TBL] [Abstract][Full Text] [Related]
13. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. Staats CC; Junges A; Guedes RL; Thompson CE; de Morais GL; Boldo JT; de Almeida LG; Andreis FC; Gerber AL; Sbaraini N; da Paixão RL; Broetto L; Landell M; Santi L; Beys-da-Silva WO; Silveira CP; Serrano TR; de Oliveira ES; Kmetzsch L; Vainstein MH; de Vasconcelos AT; Schrank A BMC Genomics; 2014 Sep; 15():822. PubMed ID: 25263348 [TBL] [Abstract][Full Text] [Related]
14. Modified Adamek's medium renders high yields of Metarhizium robertsii blastospores that are desiccation tolerant and infective to cattle-tick larvae. Iwanicki NS; Ferreira BO; Mascarin GM; Júnior ÍD Fungal Biol; 2018 Sep; 122(9):883-890. PubMed ID: 30115322 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium anisopliae using RNA-Seq. Wang ZX; Zhou XZ; Meng HM; Liu YJ; Zhou Q; Huang B Appl Microbiol Biotechnol; 2014 Jun; 98(12):5589-97. PubMed ID: 24769907 [TBL] [Abstract][Full Text] [Related]
16. Mass Production of Entomopathogenic Fungi, Metarhizium robertsii and Metarhizium pinghaense, for Commercial Application Against Insect Pests. Mathulwe LL; Malan AP; Stokwe NF J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435892 [TBL] [Abstract][Full Text] [Related]
17. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Wassermann M; Selzer P; Steidle JLM; Mackenstedt U Ticks Tick Borne Dis; 2016 Jul; 7(5):768-771. PubMed ID: 27005430 [TBL] [Abstract][Full Text] [Related]
18. Pathogenicity of an Indigenous Strain of the Entomopathogenic Fungus Metarhizium anisopliae (Hypocreales: Clavicipitaceae) (MET-GRA4 Strain) as a Potential Biological Control Agent Against the Red Palm Weevil (Coleoptera: Dryophthoridae). Ishak I; Ng LC; Haris-Hussain M; Jalinas J; Idris AB; Azlina Z; Samsudin A; Wahizatul AA J Econ Entomol; 2020 Feb; 113(1):43-49. PubMed ID: 31586213 [TBL] [Abstract][Full Text] [Related]
19. MripacC regulates blastosphere budding and influences virulence of the pathogenic fungus Metarhizium rileyi. Li R; Wang J; Yin Y; Deng C; Yang K; Wang Z Fungal Biol; 2021 Aug; 125(8):596-608. PubMed ID: 34281653 [TBL] [Abstract][Full Text] [Related]
20. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]