These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32354892)

  • 1. Hydroxyapatite Nanoparticles as Injectable Bone Substitute Material in a Vertical Bone Augmentation Model.
    Kaneko A; Marukawa E; Harada H
    In Vivo; 2020; 34(3):1053-1061. PubMed ID: 32354892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.
    Belouka SM; Strietzel FP
    Int J Oral Maxillofac Implants; 2016; 31(6):1281-1291. PubMed ID: 27861653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical applications of avian eggshell-derived hydroxyapatite.
    Opris H; Bran S; Dinu C; Baciut M; Prodan DA; Mester A; Baciut G
    Bosn J Basic Med Sci; 2020 Nov; 20(4):430-437. PubMed ID: 32651970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystalline hydroxyapatite-based material already contributes to implant stability after 3 months: a clinical and radiologic 3-year follow-up investigation.
    Ghanaati S; Lorenz J; Obreja K; Choukroun J; Landes C; Sader RA
    J Oral Implantol; 2014 Feb; 40(1):103-9. PubMed ID: 24044461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular, Cellular and Pharmaceutical Aspects of Synthetic Hydroxyapatite Bone Substitutes for Oral and Maxillofacial Grafting.
    Gotz W; Papageorgiou SN
    Curr Pharm Biotechnol; 2017; 18(1):95-106. PubMed ID: 27915980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine-derived hydroxyapatite: a comparative clinical and histologic study.
    Mangano C; Scarano A; Perrotti V; Iezzi G; Piattelli A
    Int J Oral Maxillofac Implants; 2007; 22(6):980-6. PubMed ID: 18271380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis.
    Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN
    Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in research applications of nanophase hydroxyapatite.
    Fox K; Tran PA; Tran N
    Chemphyschem; 2012 Jul; 13(10):2495-506. PubMed ID: 22467406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical bone augmentation induced by ultrathin hydroxyapatite sputtered coated mini titanium implants in a rabbit calvaria model.
    Wang X; Zakaria O; Madi M; Hao J; Chou J; Kasugai S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1700-8. PubMed ID: 25533173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim): preliminary clinical and histological results.
    Strietzel FP; Reichart PA; Graf HL
    Clin Oral Implants Res; 2007 Dec; 18(6):743-51. PubMed ID: 17888015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hydroxyapatite bone substitute (Ostim) in sinus floor elevation. Maxillary sinus floor augmentation: bone regeneration by means of a nanocrystalline in-phase hydroxyapatite (Ostim)].
    Smeets R; Grosjean MB; Jelitte G; Heiland M; Kasaj A; Riediger D; Yildirim M; Spiekermann H; Maciejewski O
    Schweiz Monatsschr Zahnmed; 2008; 118(3):203-12. PubMed ID: 18422056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous hydroxyapatite for grafting the maxillary sinus: a comparative histomorphometric study in sheep.
    Haas R; Baron M; Donath K; Zechner W; Watzek G
    Int J Oral Maxillofac Implants; 2002; 17(3):337-46. PubMed ID: 12074448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits.
    Huber FX; Berger I; McArthur N; Huber C; Kock HP; Hillmeier J; Meeder PJ
    J Mater Sci Mater Med; 2008 Jan; 19(1):33-8. PubMed ID: 17569013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial.
    Lorenz J; Korzinskas T; Chia P; Maawi SA; Eichler K; Sader RA; Ghanaati S
    J Oral Implantol; 2018 Feb; 44(1):62-69. PubMed ID: 29091020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation.
    Pang KM; Lee JK; Seo YK; Kim SM; Kim MJ; Lee JH
    Biomed Mater Eng; 2015; 25(1):25-38. PubMed ID: 25585978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur.
    Tao ZS; Zhou WS; Qiang Z; Tu KK; Huang ZL; Xu HM; Sun T; Lv YX; Cui W; Yang L
    J Biomater Appl; 2016 Feb; 30(7):952-60. PubMed ID: 26482573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.
    Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C
    J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.
    Kim BS; Kang HJ; Yang SS; Lee J
    Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison Study of Three Hydroxyapatite-Based Bone Substitutes in a Calvarial Defect Model in Rabbits.
    Xu A; Zhou C; Qi W; He F
    Int J Oral Maxillofac Implants; 2019; 34(2):434–442. PubMed ID: 30703185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.