BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32355002)

  • 1. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise.
    Knudsen NH; Stanya KJ; Hyde AL; Chalom MM; Alexander RK; Liou YH; Starost KA; Gangl MR; Jacobi D; Liu S; Sopariwala DH; Fonseca-Pereira D; Li J; Hu FB; Garrett WS; Narkar VA; Ortlund EA; Kim JH; Paton CM; Cooper JA; Lee CH
    Science; 2020 May; 368(6490):. PubMed ID: 32355002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice.
    Kim JH; Pan JH; Lee ES; Kim YJ
    Biochem Biophys Res Commun; 2015 Aug; 464(2):568-73. PubMed ID: 26164228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle-Specific Deletion of Toll-like Receptor 4 Impairs Metabolic Adaptation to Wheel Running in Mice.
    Ali MM; McMillan RP; Fausnacht DW; Kavanaugh JW; Harvey MM; Stevens JR; Wu Y; Mynatt RL; Hulver MW
    Med Sci Sports Exerc; 2021 Jun; 53(6):1161-1169. PubMed ID: 33315811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training.
    Mohktar RA; Montgomery MK; Murphy RM; Watt MJ
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E128-37. PubMed ID: 27189934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise.
    Gudiksen A; Schwartz CL; Bertholdt L; Joensen E; Knudsen JG; Pilegaard H
    PLoS One; 2016; 11(6):e0156460. PubMed ID: 27327080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPARδ Promotes Running Endurance by Preserving Glucose.
    Fan W; Waizenegger W; Lin CS; Sorrentino V; He MX; Wall CE; Li H; Liddle C; Yu RT; Atkins AR; Auwerx J; Downes M; Evans RM
    Cell Metab; 2017 May; 25(5):1186-1193.e4. PubMed ID: 28467934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle mitochondrial function and exercise capacity are not impaired in mice with knockout of STAT3.
    Dent JR; Hetrick B; Tahvilian S; Sathe A; Greyslak K; LaBarge SA; Svensson K; McCurdy CE; Schenk S
    J Appl Physiol (1985); 2019 Oct; 127(4):1117-1127. PubMed ID: 31513449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2.
    Wang L; Yang S; Yan L; Wei H; Wang J; Yu S; Kong AT; Zhang Y
    J Appl Physiol (1985); 2019 Nov; 127(5):1267-1277. PubMed ID: 31487225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure.
    Nambu H; Takada S; Fukushima A; Matsumoto J; Kakutani N; Maekawa S; Shirakawa R; Nakano I; Furihata T; Katayama T; Yamanashi K; Obata Y; Saito A; Yokota T; Kinugawa S
    Eur J Pharmacol; 2020 Jan; 866():172810. PubMed ID: 31738936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise.
    Murase T; Haramizu S; Shimotoyodome A; Tokimitsu I; Hase T
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1550-6. PubMed ID: 16410398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct control of hepatic glucose production by interleukin-13 in mice.
    Stanya KJ; Jacobi D; Liu S; Bhargava P; Dai L; Gangl MR; Inouye K; Barlow JL; Ji Y; Mizgerd JP; Qi L; Shi H; McKenzie AN; Lee CH
    J Clin Invest; 2013 Jan; 123(1):261-71. PubMed ID: 23257358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice.
    Caffin F; Prola A; Piquereau J; Novotova M; David DJ; Garnier A; Fortin D; Alavi MV; Veksler V; Ventura-Clapier R; Joubert F
    J Physiol; 2013 Dec; 591(23):6017-37. PubMed ID: 24042504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of the kinase S6k1 mimics the effect of chronic endurance exercise on glucose tolerance and muscle oxidative stress.
    Binsch C; Jelenik T; Pfitzer A; Dille M; Müller-Lühlhoff S; Hartwig S; Karpinski S; Lehr S; Kabra DG; Chadt A; Roden M; Al-Hasani H; Castañeda TR
    Mol Metab; 2017 Nov; 6(11):1443-1453. PubMed ID: 29107291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle metabolic reprogramming underlies the resistance of liver fatty acid-binding protein (LFABP)-null mice to high-fat feeding-induced decline in exercise capacity.
    Xu H; Gajda AM; Zhou YX; Panetta C; Sifnakis Z; Fatima A; Henderson GC; Storch J
    J Biol Chem; 2019 Oct; 294(42):15358-15372. PubMed ID: 31451493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
    Nie Y; Sato Y; Wang C; Yue F; Kuang S; Gavin TP
    FASEB J; 2016 Nov; 30(11):3745-3758. PubMed ID: 27458245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of p53 in Determining Mitochondrial Adaptations to Endurance Training in Skeletal Muscle.
    Beyfuss K; Erlich AT; Triolo M; Hood DA
    Sci Rep; 2018 Oct; 8(1):14710. PubMed ID: 30279494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Dose Administration of Taheebo Polyphenol Enhances Endurance Capacity in Mice.
    Yada K; Suzuki K; Oginome N; Ma S; Fukuda Y; Iida A; Radak Z
    Sci Rep; 2018 Oct; 8(1):14625. PubMed ID: 30279507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.