These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32355635)

  • 1. An unstructured immersed finite element method for nonlinear solid mechanics.
    Rüberg T; Cirak F; García Aznar JM
    Adv Model Simul Eng Sci; 2016; 3(1):22. PubMed ID: 32355635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitsche's Method For Helmholtz Problems with Embedded Interfaces.
    Zou Z; Aquino W; Harari I
    Int J Numer Methods Eng; 2017 May; 110(7):618-636. PubMed ID: 28713177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immersed boundary-conformal isogeometric method for linear elliptic problems.
    Wei X; Marussig B; Antolin P; Buffa A
    Comput Mech; 2021; 68(6):1385-1405. PubMed ID: 34789955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method.
    Shukla K; Carcione JM; Hesthaven JS; L'heureux E
    J Acoust Soc Am; 2020 May; 147(5):3136. PubMed ID: 32486768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nodal Immersed Finite Element-Finite Difference Method.
    Wells D; Vadala-Roth B; Lee JH; Griffith BE
    J Comput Phys; 2023 Mar; 477():. PubMed ID: 37007629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.
    Wang X; Zhang LT
    Comput Methods Appl Mech Eng; 2013 Dec; 267():. PubMed ID: 24223445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.
    Mikhal J; Geurts BJ
    J Math Biol; 2013 Dec; 67(6-7):1847-75. PubMed ID: 23192329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immersed boundary methods in wave-based virtual acoustics.
    Bilbao S
    J Acoust Soc Am; 2022 Mar; 151(3):1627. PubMed ID: 35364927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling finite and boundary element methods to solve the Poisson-Boltzmann equation for electrostatics in molecular solvation.
    Bosy M; Scroggs MW; Betcke T; Burman E; Cooper CD
    J Comput Chem; 2024 Apr; 45(11):787-797. PubMed ID: 38126925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based simulations of pulsed laser ablation using an embedded finite element method.
    Liu Y; Claus S; Kerfriden P; Chen J; Zhong P; Dolbow JE
    Int J Heat Mass Transf; 2023 May; 204():. PubMed ID: 36909718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-automated finite difference mesh creation method for use with immersed boundary software IB2d and IBAMR.
    Senter DM; Douglas DR; Strickland WC; Thomas SG; Talkington AM; Miller LA; Battista NA
    Bioinspir Biomim; 2020 Nov; 16(1):. PubMed ID: 32746437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element approximation of the Laplace-Beltrami operator on a surface with boundary.
    Burman E; Hansbo P; Larson MG; Larsson K; Massing A
    Numer Math (Heidelb); 2019; 141(1):141-172. PubMed ID: 30906074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-level hp-finite cell method for embedded interface problems with application in biomechanics.
    Elhaddad M; Zander N; Bog T; Kudela L; Kollmannsberger S; Kirschke J; Baum T; Ruess M; Rank E
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2951. PubMed ID: 29265715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.