These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32355636)
1. Vademecum-based approach to multi-scale topological material design. Ferrer A; Oliver J; Cante JC; Lloberas-Valls O Adv Model Simul Eng Sci; 2016; 3(1):23. PubMed ID: 32355636 [TBL] [Abstract][Full Text] [Related]
2. Two-scale topology optimization in computational material design: An integrated approach. Ferrer A; Cante JC; Hernández JA; Oliver J Int J Numer Methods Eng; 2018 Apr; 114(3):232-254. PubMed ID: 29937579 [TBL] [Abstract][Full Text] [Related]
3. Combining radial point interpolation meshless method with a new homogenization technique for trabecular bone multiscale structural analyses. Costa Marques M; Belinha J; Fonseca Oliveira A; Manzanares Céspedes MC; Natal Jorge R Acta Bioeng Biomech; 2019; 21(2):101-113. PubMed ID: 31741486 [TBL] [Abstract][Full Text] [Related]
4. Concurrent Topology Optimization of Composite Plates for Minimum Dynamic Compliance. Zhang H; Ding X; Ni W; Chen Y; Zhang X; Li H Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057256 [TBL] [Abstract][Full Text] [Related]
5. Concurrent Topology Optimization for Maximizing the Modal Loss Factor of Plates with Constrained Layer Damping Treatment. Fang Z; Yao L; Hou J; Xiao Y Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629542 [TBL] [Abstract][Full Text] [Related]
6. Application-Specific Computational Materials Design via Multiscale Modeling and the Inductive Design Exploration Method (IDEM). Ellis BD; McDowell DL Integr Mater Manuf Innov; 2017; 6(1):9-35. PubMed ID: 31976204 [TBL] [Abstract][Full Text] [Related]
7. A Two-Scale Multi-Resolution Topologically Optimized Multi-Material Design of 3D Printed Craniofacial Bone Implants. Park J; Zobaer T; Sutradhar A Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33498498 [TBL] [Abstract][Full Text] [Related]
8. Computational Coupled Method for Multiscale and Phase Analysis. Tak M; Park D; Park T J Eng Mater Technol; 2013 Apr; 135(2):210131-2101311. PubMed ID: 23918471 [TBL] [Abstract][Full Text] [Related]
9. Reduced-order modelling numerical homogenization. Abdulle A; Bai Y Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982257 [TBL] [Abstract][Full Text] [Related]
10. Topological Design of Multi-Material Compliant Mechanisms with Global Stress Constraints. Zhan J; Li Y; Luo Z; Liu M Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832791 [TBL] [Abstract][Full Text] [Related]
11. Bounding the Multi-Scale Domain in Numerical Modelling and Meta-Heuristics Optimization: Application to Poroelastic Media with Damageable Cracks. Argilaga A; Papachristos E Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300893 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic material-field series expansion for the topological design of optical metalens. Sun Z; Liu P; Luo Y Opt Express; 2022 May; 30(10):16459-16478. PubMed ID: 36221488 [TBL] [Abstract][Full Text] [Related]
13. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
14. Concurrent Topological Structure and Cross-Infill Angle Optimization for Material Extrusion Polymer Additive Manufacturing with Microstructure Modeling. Tang R; Zhang C; Liu J Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744465 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization. Boyle C; Kim IY J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems. Gangwar T; Schillinger D Struct Multidiscipl Optim; 2023; 66(9):195. PubMed ID: 37600469 [TBL] [Abstract][Full Text] [Related]
17. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters. Chen N; Yu D; Xia B; Liu J; Ma Z J Acoust Soc Am; 2017 Apr; 141(4):2768. PubMed ID: 28464643 [TBL] [Abstract][Full Text] [Related]