These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32356371)

  • 1. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N; Yabuta S; Ikeda T; Oyama T; Muraki N; Kurisu G; Itoh S
    J Biol Chem; 2013 Jul; 288(30):22128-40. PubMed ID: 23749993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein.
    Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M
    PLoS Biol; 2018 Dec; 16(12):e3000077. PubMed ID: 30596633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone.
    Inoue T; Shiota Y; Yoshizawa K
    J Am Chem Soc; 2008 Dec; 130(50):16890-7. PubMed ID: 19007228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF.
    Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational His-Cys cross-linkage formation in tyrosinase induced by copper(II)-peroxo species.
    Fujieda N; Ikeda T; Murata M; Yanagisawa S; Aono S; Ohkubo K; Nagao S; Ogura T; Hirota S; Fukuzumi S; Nakamura Y; Hata Y; Itoh S
    J Am Chem Soc; 2011 Feb; 133(5):1180-3. PubMed ID: 21218798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctions of MelB, a fungal tyrosinase from Aspergillus oryzae.
    Fujieda N; Murata M; Yabuta S; Ikeda T; Shimokawa C; Nakamura Y; Hata Y; Itoh S
    Chembiochem; 2012 Jan; 13(2):193-201. PubMed ID: 22213164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment.
    Fujieda N; Murata M; Yabuta S; Ikeda T; Shimokawa C; Nakamura Y; Hata Y; Itoh S
    J Biol Inorg Chem; 2013 Jan; 18(1):19-26. PubMed ID: 23053534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.