These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32356539)
1. Effects of radial injection and solution thickness on the dynamics of confined A + B → C chemical fronts. Tóth Á; Schuszter G; Das NP; Lantos E; Horváth D; De Wit A; Brau F Phys Chem Chem Phys; 2020 May; 22(18):10278-10285. PubMed ID: 32356539 [TBL] [Abstract][Full Text] [Related]
2. Flow Control of A+B→C Fronts by Radial Injection. Brau F; Schuszter G; De Wit A Phys Rev Lett; 2017 Mar; 118(13):134101. PubMed ID: 28409971 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of A+B→C reaction fronts under radial advection in a Poiseuille flow. Comolli A; De Wit A; Brau F Phys Rev E; 2021 Oct; 104(4-1):044206. PubMed ID: 34781512 [TBL] [Abstract][Full Text] [Related]
4. Influence of rectilinear vs radial advection on the yield of A + B → C reaction fronts: A comparison. Brau F; De Wit A J Chem Phys; 2020 Feb; 152(5):054716. PubMed ID: 32035449 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of A+B → C reaction fronts under radial advection in three dimensions. Comolli A; De Wit A; Brau F Phys Rev E; 2019 Nov; 100(5-1):052213. PubMed ID: 31869892 [TBL] [Abstract][Full Text] [Related]
6. Effect of radial advection on autocatalytic reaction-diffusion fronts. Comolli A; Negrojević L; Brau F; De Wit A Phys Chem Chem Phys; 2023 Apr; 25(15):10604-10619. PubMed ID: 36994998 [TBL] [Abstract][Full Text] [Related]
7. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. Rongy L; Goyal N; Meiburg E; De Wit A J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873 [TBL] [Abstract][Full Text] [Related]
8. Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations. Stergiou Y; Escala DM; Papp P; Horváth D; Hauser MJB; Brau F; De Wit A; Tóth Á; Eckert K; Schwarzenberger K NPJ Microgravity; 2024 May; 10(1):53. PubMed ID: 38724588 [TBL] [Abstract][Full Text] [Related]
9. Advection of chemical reaction fronts in a porous medium. Koptyug IV; Zhivonitko VV; Sagdeev RZ J Phys Chem B; 2008 Jan; 112(4):1170-6. PubMed ID: 18173259 [TBL] [Abstract][Full Text] [Related]
10. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts. Tiani R; Rongy L J Chem Phys; 2016 Sep; 145(12):124701. PubMed ID: 27782642 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526 [TBL] [Abstract][Full Text] [Related]
12. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499 [TBL] [Abstract][Full Text] [Related]
13. Complex dynamics of interacting fronts in a simple A+B→C reaction-diffusion system. Tiani R; Rongy L Phys Rev E; 2019 Sep; 100(3-1):030201. PubMed ID: 31640018 [TBL] [Abstract][Full Text] [Related]
14. Front propagation in channels with spatially modulated cross section. Martens S; Löber J; Engel H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022902. PubMed ID: 25768565 [TBL] [Abstract][Full Text] [Related]