BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32356651)

  • 1. Confinement Effect of Mesopores: In Situ Synthesis of Cationic Tungsten-Vacancies for a Highly Ordered Mesoporous Tungsten Phosphide Electrocatalyst.
    Li F; Wang C; Han X; Feng X; Qu Y; Liu J; Chen W; Zhao L; Song X; Zhu H; Chen H; Zhao M; Deng Z; Wu J; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2020 May; 12(20):22741-22750. PubMed ID: 32356651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodically ordered mesoporous iron phosphide for highly efficient electrochemical hydrogen evolution.
    Zhang C; Gao Z; Zhao L; Ai J; Li N; Li X
    J Colloid Interface Sci; 2020 Jun; 569():68-75. PubMed ID: 32097802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect engineering associated with cationic vacancies for promoting electrocatalytic water splitting in iron-doped Ni
    Guo Z; Bi M; He H; Liu Z; Duan Y; Cao W
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):785-794. PubMed ID: 37866050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of an N-Decorated Carbon-Encapsulated W
    Wei P; Sun X; Wang M; Xu J; He Z; Li X; Cheng F; Xu Y; Li Q; Han J; Yang H; Huang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53955-53964. PubMed ID: 34739211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial Hydrogen Atom to Boost Intrinsic Catalytic Activity of Tungsten Oxide for Hydrogen Evolution Reaction.
    Yang J; Cao Y; Zhang S; Shi Q; Chen S; Zhu S; Li Y; Huang J
    Small; 2023 Jul; 19(29):e2207295. PubMed ID: 37029585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface engineering and nanoconfinement strategies to synergistically enhance hydrogen evolution in acidic and basic media.
    Wei P; Zhuge X; Li Q; Sun X; Liu W; Liang K; Han J; Ren Y; Huang Y
    J Colloid Interface Sci; 2024 May; 662():814-821. PubMed ID: 38382366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ni(OH)
    Kim D; Park J; Lee J; Zhang Z; Yong K
    ChemSusChem; 2018 Oct; 11(20):3618-3624. PubMed ID: 30137693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution.
    Han W; Liu Z; Pan Y; Guo G; Zou J; Xia Y; Peng Z; Li W; Dong A
    Adv Mater; 2020 Jul; 32(28):e2002584. PubMed ID: 32491265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient catalytic activity for the hydrogen evolution reaction on pristine and monovacancy defected WP systems: a first-principles investigation.
    Ma Y; Yu G; Wang T; Zhang C; Huang X; Chen W
    Phys Chem Chem Phys; 2018 May; 20(20):13757-13764. PubMed ID: 29740655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction.
    Pu Z; Amiinu IS; He D; Wang M; Li G; Mu S
    Nanoscale; 2018 Jul; 10(26):12407-12412. PubMed ID: 29926048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution.
    Zheng T; Sang W; He Z; Wei Q; Chen B; Li H; Cao C; Huang R; Yan X; Pan B; Zhou S; Zeng J
    Nano Lett; 2017 Dec; 17(12):7968-7973. PubMed ID: 29178807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts.
    Ma H; Yan W; Yu Y; Deng L; Hong Z; Song L; Li L
    Nanoscale; 2023 Jan; 15(3):1357-1364. PubMed ID: 36562326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude.
    Duan J; Chen S; Ortíz-Ledón CA; Jaroniec M; Qiao SZ
    Angew Chem Int Ed Engl; 2020 May; 59(21):8181-8186. PubMed ID: 31970852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated MoS
    Ge J; Chen Y; Zhao Y; Wang Y; Zhang F; Lei X
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst.
    Wu C; Yang Y; Dong D; Zhang Y; Li J
    Small; 2017 Apr; 13(15):. PubMed ID: 28145620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coating of Phosphide Catalysts on p-Silicon by a Necking Strategy for Improved Photoelectrochemical Characteristics in Alkaline Media.
    Li F; Yuan Y; Feng X; Liu J; Chen S; Lin Y; Sun Y; Chen H; Zhao L; Song X; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2021 May; 13(17):20185-20193. PubMed ID: 33878873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media.
    Jin J; Yin J; Liu H; Huang B; Hu Y; Zhang H; Sun M; Peng Y; Xi P; Yan CH
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):14117-14123. PubMed ID: 33843135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays.
    Sun J; Ren M; Yu L; Yang Z; Xie L; Tian F; Yu Y; Ren Z; Chen S; Zhou H
    Small; 2019 Feb; 15(6):e1804272. PubMed ID: 30637939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen Evolution by Electrochemical Water Splitting.
    Kwong WL; Gracia-Espino E; Lee CC; Sandström R; Wågberg T; Messinger J
    ChemSusChem; 2017 Nov; 10(22):4544-4551. PubMed ID: 28980427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-growth Ni
    Zhang WZ; Chen GY; Zhao J; Liang JC; Sun LF; Liu GF; Ji BW; Yan XY; Zhang JR
    J Colloid Interface Sci; 2020 Mar; 561():638-646. PubMed ID: 31744618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.