BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32356660)

  • 1. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Organization in Proteinaceous Membrane-Stabilized Coacervate Protocells.
    Li J; Liu X; Abdelmohsen LKEA; Williams DS; Huang X
    Small; 2019 Sep; 15(36):e1902893. PubMed ID: 31298806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell.
    Mason AF; Buddingh' BC; Williams DS; van Hest JCM
    J Am Chem Soc; 2017 Dec; 139(48):17309-17312. PubMed ID: 29134798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes.
    Jiang L; Zeng Y; Li H; Lin Z; Liu H; Richardson JJ; Gao Z; Wu D; Liu L; Caruso F; Zhou J
    J Am Chem Soc; 2023 Nov; 145(44):24108-24115. PubMed ID: 37788442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predatory behaviour in synthetic protocell communities.
    Qiao Y; Li M; Booth R; Mann S
    Nat Chem; 2017 Feb; 9(2):110-119. PubMed ID: 28282044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction.
    Perin GB; Moreno S; Zhou Y; Günther M; Boye S; Voit B; Felisberti MI; Appelhans D
    Biomacromolecules; 2023 Dec; 24(12):5807-5822. PubMed ID: 37984848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Configurable Soft Microgelsomes as a Smart Biomimetic Protocell.
    Gaur D; Dubey NC; Tripathi BP
    Biomacromolecules; 2024 Feb; 25(2):1108-1118. PubMed ID: 38236272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.
    Gao N; Xu C; Yin Z; Li M; Mann S
    J Am Chem Soc; 2022 Mar; 144(9):3855-3862. PubMed ID: 35192333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal Dynamic Assembly/Disassembly of Organelle-Mimics Based on Intrinsically Disordered Protein-Polymer Conjugates.
    Zhao H; Ibarboure E; Ibrahimova V; Xiao Y; Garanger E; Lecommandoux S
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102508. PubMed ID: 34719874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomic Integration in Nested Protocell Communities.
    Yin Z; Gao N; Xu C; Li M; Mann S
    J Am Chem Soc; 2023 Jul; 145(27):14727-14736. PubMed ID: 37369121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells.
    Altenburg WJ; Yewdall NA; Vervoort DFM; van Stevendaal MHME; Mason AF; van Hest JCM
    Nat Commun; 2020 Dec; 11(1):6282. PubMed ID: 33293610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coacervate microdroplet protocell-mediated gene transfection for nitric oxide production and induction of cell apoptosis.
    Zhang Y; Yao Y; Liu S; Chen Y; Zhou S; Wang K; Yang X; Liu J
    J Mater Chem B; 2021 Dec; 9(47):9784-9793. PubMed ID: 34820677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells.
    Gobbo P; Tian L; Pavan Kumar BVVS; Turvey S; Cattelan M; Patil AJ; Carraro M; Bonchio M; Mann S
    Nat Commun; 2020 Jan; 11(1):41. PubMed ID: 31900396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets.
    Martin N; Tian L; Spencer D; Coutable-Pennarun A; Anderson JLR; Mann S
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14594-14598. PubMed ID: 31408263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Mediated Protein Shuttling between Coacervate-Based Artificial Cells.
    Mashima T; van Stevendaal MHME; Cornelissens FRA; Mason AF; Rosier BJHM; Altenburg WJ; Oohora K; Hirayama S; Hayashi T; van Hest JCM; Brunsveld L
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202115041. PubMed ID: 35133040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.