These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32356712)

  • 1. [CRISPR-Cas9 for muscle dystrophies].
    Ballouhey O; Bartoli M; Levy N
    Med Sci (Paris); 2020 Apr; 36(4):358-366. PubMed ID: 32356712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas correction of muscular dystrophies.
    Zhang Y; Nishiyama T; Olson EN; Bassel-Duby R
    Exp Cell Res; 2021 Nov; 408(1):112844. PubMed ID: 34571006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies.
    Fatehi S; Marks RM; Rok MJ; Perillat L; Ivakine EA; Cohn RD
    Hum Gene Ther; 2023 May; 34(9-10):388-403. PubMed ID: 37119122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome- and Cell-Based Strategies in Therapy of Muscular Dystrophies.
    Saada YB; Dib C; Lipinski M; Vassetzky YS
    Biochemistry (Mosc); 2016 Jul; 81(7):678-90. PubMed ID: 27449614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Gene editing in drug discovery and therapeutic innovation].
    Galzi JL
    Med Sci (Paris); 2019 Apr; 35(4):309-315. PubMed ID: 31038108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of muscular dystrophies by CRISPR gene editing.
    Chemello F; Bassel-Duby R; Olson EN
    J Clin Invest; 2020 Jun; 130(6):2766-2776. PubMed ID: 32478678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy.
    Sarkar E; Khan A
    Cancer Treat Res Commun; 2021; 27():100289. PubMed ID: 33667951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment.
    Jiang C; Meng L; Yang B; Luo X
    Clin Genet; 2020 Jan; 97(1):73-88. PubMed ID: 31231788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine.
    Jacinto FV; Link W; Ferreira BI
    J Cell Mol Med; 2020 Apr; 24(7):3766-3778. PubMed ID: 32096600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies.
    Abati E; Sclarandi E; Comi GP; Parente V; Corti S
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
    Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL
    Neurochem Int; 2018 Jan; 112():187-196. PubMed ID: 28732771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics.
    Givens BE; Naguib YW; Geary SM; Devor EJ; Salem AK
    AAPS J; 2018 Oct; 20(6):108. PubMed ID: 30306365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System.
    Bellizzi A; Ahye N; Jalagadugula G; Wollebo HS
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):578-594. PubMed ID: 31512166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene.
    Kemaladewi DU; Bassi PS; Erwood S; Al-Basha D; Gawlik KI; Lindsay K; Hyatt E; Kember R; Place KM; Marks RM; Durbeej M; Prescott SA; Ivakine EA; Cohn RD
    Nature; 2019 Aug; 572(7767):125-130. PubMed ID: 31341277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making gene editing a therapeutic reality.
    Conboy I; Murthy N; Etienne J; Robinson Z
    F1000Res; 2018; 7():. PubMed ID: 30613384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.