These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32356829)

  • 1. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography.
    Camino A; Ng R; Huang J; Guo Y; Ni S; Jia Y; Huang D; Jian Y
    Opt Lett; 2020 May; 45(9):2612-2615. PubMed ID: 32356829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorless adaptive-optics optical coherence tomographic angiography.
    Camino A; Zang P; Athwal A; Ni S; Jia Y; Huang D; Jian Y
    Biomed Opt Express; 2020 Jul; 11(7):3952-3967. PubMed ID: 33014578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavefront sensorless adaptive optics OCT with the DONE algorithm for
    Verstraete HRGW; Heisler M; Ju MJ; Wahl D; Bliek L; Kalkman J; Bonora S; Jian Y; Verhaegen M; Sarunic MV
    Biomed Opt Express; 2017 Apr; 8(4):2261-2275. PubMed ID: 28736670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-field sensorless adaptive optics swept-source optical coherence tomographic angiography in rodents.
    Wei X; Hormel TT; Pi S; Wang B; Morrison JC; Jia Y
    Opt Lett; 2022 Oct; 47(19):5060-5063. PubMed ID: 36181186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.
    Jian Y; Xu J; Gradowski MA; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2014 Feb; 5(2):547-59. PubMed ID: 24575347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients.
    Polans J; Cunefare D; Cole E; Keller B; Mettu PS; Cousins SW; Allingham MJ; Izatt JA; Farsiu S
    Opt Lett; 2017 Jan; 42(1):17-20. PubMed ID: 28059209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive-glasses time-domain FFOCT for wide-field high-resolution retinal imaging with increased SNR.
    Scholler J; Groux K; Grieve K; Boccara C; Mecê P
    Opt Lett; 2020 Nov; 45(21):5901-5904. PubMed ID: 33137028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
    Pircher M; Zawadzki RJ
    Biomed Opt Express; 2017 May; 8(5):2536-2562. PubMed ID: 28663890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography.
    Bonora S; Zawadzki RJ
    Opt Lett; 2013 Nov; 38(22):4801-4. PubMed ID: 24322136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.
    Polans J; Keller B; Carrasco-Zevallos OM; LaRocca F; Cole E; Whitson HE; Lad EM; Farsiu S; Izatt JA
    Biomed Opt Express; 2017 Jan; 8(1):16-37. PubMed ID: 28101398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images.
    Kurokawa K; Crowell JA; Do N; Lee JJ; Miller DT
    J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33410310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of static and dynamic ocular aberrations on full-field optical coherence tomography for in vivo high-resolution retinal imaging.
    Cai Y; Thouvenin O; Grieve K; Mecê P
    Opt Lett; 2024 May; 49(9):2209-2212. PubMed ID: 38691681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.
    Wahl DJ; Jian Y; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2016 Jan; 7(1):1-12. PubMed ID: 26819812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography.
    Janpongsri W; Huang J; Ng R; Wahl DJ; Sarunic MV; Jian Y
    J Biophotonics; 2020 Aug; 13(8):e202000042. PubMed ID: 32421890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive-optics ultrahigh-resolution optical coherence tomography.
    Hermann B; Fernández EJ; Unterhuber A; Sattmann H; Fercher AF; Drexler W; Prieto PM; Artal P
    Opt Lett; 2004 Sep; 29(18):2142-4. PubMed ID: 15460883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.