These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32357504)

  • 1. Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches.
    Cominelli E; Pilu R; Sparvoli F
    Plants (Basel); 2020 Apr; 9(5):. PubMed ID: 32357504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes.
    Hummel M; Talsma EF; Taleon V; Londoño L; Brychkova G; Gallego S; Raatz B; Spillane C
    Nutrients; 2020 Feb; 12(3):. PubMed ID: 32121231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
    de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L
    Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant?
    Sparvoli F; Cominelli E
    Plants (Basel); 2015 Nov; 4(4):728-55. PubMed ID: 27135349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Raboy V
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 31979164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association studies of mineral and phytic acid concentrations in pea (Pisum sativum L.) to evaluate biofortification potential.
    Powers S; Boatwright JL; Thavarajah D
    G3 (Bethesda); 2021 Sep; 11(9):. PubMed ID: 34544130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability.
    Perera I; Seneweera S; Hirotsu N
    Rice (N Y); 2018 Jan; 11(1):4. PubMed ID: 29327163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
    Connorton JM; Balk J
    Plant Cell Physiol; 2019 Jul; 60(7):1447-1456. PubMed ID: 31058958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving wheat as a source of iron and zinc for global nutrition.
    Balk J; Connorton JM; Wan Y; Lovegrove A; Moore KL; Uauy C; Sharp PA; Shewry PR
    Nutr Bull; 2019 Mar; 44(1):53-59. PubMed ID: 31007606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness.
    Dias DM; Costa NMB; Nutti MR; Tako E; Martino HSD
    Crit Rev Food Sci Nutr; 2018; 58(13):2136-2146. PubMed ID: 28414527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytic Acid and Transporters: What Can We Learn from
    Cominelli E; Pilu R; Sparvoli F
    Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31948109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens.
    Poudel P; Di Gioia F; Lambert JD; Connolly EL
    Front Plant Sci; 2023; 14():1177844. PubMed ID: 37139105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains.
    Gupta RK; Gangoliya SS; Singh NK
    J Food Sci Technol; 2015 Feb; 52(2):676-84. PubMed ID: 25694676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in relative iron bioavailability in traditional Bangladeshi meal plans.
    DellaValle DM; Glahn RP
    Food Nutr Bull; 2014 Dec; 35(4):431-9. PubMed ID: 25639128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.
    Redekar NR; Biyashev RM; Jensen RV; Helm RF; Grabau EA; Maroof MA
    BMC Genomics; 2015 Dec; 16():1074. PubMed ID: 26678836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals.
    Shahzad Z; Rouached H; Rakha A
    Compr Rev Food Sci Food Saf; 2014 May; 13(3):329-346. PubMed ID: 33412655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans.
    Liu D; Liu Y; Zhang W; Chen X; Zou C
    Nutrients; 2017 May; 9(5):. PubMed ID: 28481273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.
    White PJ; Broadley MR
    New Phytol; 2009; 182(1):49-84. PubMed ID: 19192191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.