BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 32357507)

  • 1. High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source.
    Wang L; Sun J; Guo W; Dong Y; Xie Y; Xiong F; Du Z; Li L; Deng J; Xu C
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism.
    Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils.
    Chen S; Cai W; Piner RD; Suk JW; Wu Y; Ren Y; Kang J; Ruoff RS
    Nano Lett; 2011 Sep; 11(9):3519-25. PubMed ID: 21793495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.
    Ambrosi A; Pumera M
    Nanoscale; 2014 Jan; 6(1):472-6. PubMed ID: 24217345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-thin Graphitic Film: Synthesis and Physical Properties.
    Kaplas T; Kuzhir P
    Nanoscale Res Lett; 2016 Dec; 11(1):54. PubMed ID: 26831692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.
    Shi Y
    Acc Chem Res; 2015 Feb; 48(2):163-73. PubMed ID: 25586211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial Cu-Ni Alloy Thin-Film Catalysts for Layer Number Control in Chemical Vapor-Deposited Graphene.
    Khanna SR; Stanford MG; Vlassiouk IV; Rack PD
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources.
    Li Z; Wu P; Wang C; Fan X; Zhang W; Zhai X; Zeng C; Li Z; Yang J; Hou J
    ACS Nano; 2011 Apr; 5(4):3385-90. PubMed ID: 21438574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature growth and direct transfer of graphene-graphitic carbon films on flexible plastic substrates.
    Kim YJ; Kim SJ; Jung MH; Choi KY; Bae S; Lee SK; Lee Y; Shin D; Lee B; Shin H; Choi M; Park K; Ahn JH; Hong BH
    Nanotechnology; 2012 Aug; 23(34):344016. PubMed ID: 23057073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition.
    Chan SH; Chen SH; Lin WT; Li MC; Lin YC; Kuo CC
    Nanoscale Res Lett; 2013 Jun; 8(1):285. PubMed ID: 23758668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films.
    Cho JH; Gorman JJ; Na SR; Cullinan M
    Carbon N Y; 2017 May; 115():441-448. PubMed ID: 28669999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.