These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 32357669)

  • 1. A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting.
    Chang H; Li Y; Chen G
    Chaos; 2020 Apr; 30(4):043110. PubMed ID: 32357669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel non-equilibrium memristor-based system with multi-wing attractors and multiple transient transitions.
    Gu S; Peng Q; Leng X; Du B
    Chaos; 2021 Mar; 31(3):033105. PubMed ID: 33810728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit.
    Kengne J; Njitacke Tabekoueng Z; Kamdoum Tamba V; Nguomkam Negou A
    Chaos; 2015 Oct; 25(10):103126. PubMed ID: 26520092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2Nā€‰+ā€‰1-scroll chaotic attractors system.
    Wang C; Liu X; Xia H
    Chaos; 2017 Mar; 27(3):033114. PubMed ID: 28364774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability.
    Zhang S; Zeng Y; Li Z; Wang M; Xiong L
    Chaos; 2018 Jan; 28(1):013113. PubMed ID: 29390621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistability in a physical memristor-based modified Chua's circuit.
    Guo M; Yang W; Xue Y; Gao Z; Yuan F; Dou G; Li Y
    Chaos; 2019 Apr; 29(4):043114. PubMed ID: 31042965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.
    Ma J; Zhou P; Ahmad B; Ren G; Wang C
    PLoS One; 2018; 13(1):e0191120. PubMed ID: 29342178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
    Yuan F; Wang G; Wang X
    Chaos; 2016 Jul; 26(7):073107. PubMed ID: 27475067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for generating chaotic system with arbitrary shaped distributed attractors.
    Su Q; Wang C; Chen H; Sun J; Zhang X
    Chaos; 2018 Jul; 28(7):073106. PubMed ID: 30070490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Star Memristive Neural Network: Dynamics Analysis, Circuit Implementation, and Application in a Color Cryptosystem.
    Fu S; Yao Z; Qian C; Wang X
    Entropy (Basel); 2023 Aug; 25(9):. PubMed ID: 37761560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.
    Parthasarathy S; Manikandakumar K
    Chaos; 2007 Dec; 17(4):043120. PubMed ID: 18163784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locally active memristor based oscillators: The dynamic route from period to chaos and hyperchaos.
    Ying J; Liang Y; Wang G; Iu HH; Zhang J; Jin P
    Chaos; 2021 Jun; 31(6):063114. PubMed ID: 34241294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting dimer.
    Shena J; Lazarides N; Hizanidis J
    Chaos; 2020 Dec; 30(12):123127. PubMed ID: 33380026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexisting hidden and self-excited attractors in a locally active memristor-based circuit.
    Dong Y; Wang G; Iu HH; Chen G; Chen L
    Chaos; 2020 Oct; 30(10):103123. PubMed ID: 33138451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor.
    He S; Vignesh D; Rondoni L; Banerjee S
    Neural Netw; 2023 Oct; 167():572-587. PubMed ID: 37708779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic attractors that exist only in fractional-order case.
    Matouk AE
    J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Parallel Chaotic Circuit Based on Memristor.
    Zhang X; Tian Z; Li J; Cui Z
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34198759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical behaviors, circuit design, and synchronization of a novel symmetric chaotic system with coexisting attractors.
    Qiu H; Xu X; Jiang Z; Sun K; Cao C
    Sci Rep; 2023 Feb; 13(1):1893. PubMed ID: 36732538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Analysis of
    Marszalek W; Sadecki J; Walczak M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.