These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32357725)
1. An SEM compatible plasma cell for in situ studies of hydrogen-material interaction. Massone A; Manhard A; Jacob W; Drexler A; Ecker W; Hohenwarter A; Wurster S; Kiener D Rev Sci Instrum; 2020 Apr; 91(4):043705. PubMed ID: 32357725 [TBL] [Abstract][Full Text] [Related]
2. Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures. Khedr M; Hamada A; Abd-Elaziem W; Jaskari M; Elsamanty M; Kömi J; Järvenpää A Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984403 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen Embrittlement of CrCoNi Medium-Entropy Alloy with Millimeter-Scale Grain Size: An In Situ Hydrogen Charging Study. Yan S; He X; Zhu Z Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190461 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging. Qu J; Feng M; An T; Bi Z; Du J; Yang F; Zheng S Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31409025 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses. Li Y; Zhang K; Lu D; Zeng B Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279281 [TBL] [Abstract][Full Text] [Related]
6. Addressing H-Material Interaction in Fast Diffusion Materials-A Feasibility Study on a Complex Phase Steel. Massone A; Manhard A; Drexler A; Posch C; Ecker W; Maier-Kiener V; Kiener D Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33092297 [TBL] [Abstract][Full Text] [Related]
7. Significance of Melt Pool Structure on the Hydrogen Embrittlement Behavior of a Selective Laser-Melted 316L Austenitic Stainless Steel. Liu J; Yang H; Meng L; Liu D; Xu T; Xu D; Shao X; Shao C; Li S; Zhang P; Zhang Z Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837371 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting. Kwon YJ; Casati R; Coduri M; Vedani M; Lee CS Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349538 [TBL] [Abstract][Full Text] [Related]
9. Role of slip in hydrogen-assisted crack initiation in Ni-based alloy 725. Liu M; Jiang L; Demkowicz MJ Sci Adv; 2024 Jul; 10(29):eado2118. PubMed ID: 39018408 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging. Oh DK; Kim SG; Shin SH; Hwang B Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457 [TBL] [Abstract][Full Text] [Related]
11. Effect of Strain Rate on Hydrogen Embrittlement of Ti6Al4V Alloy. Nguyen TD; Ansari N; Lee KH; Lee DH; Han JH; Lee SY Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473572 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen Embrittlement of the Additively Manufactured High-Strength X3NiCoMoTi 18-9-5 Maraging Steel. Strakosova A; Roudnická M; Ekrt O; Vojtěch D; Michalcová A Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501163 [TBL] [Abstract][Full Text] [Related]
13. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel. Misra RDK; Injeti VSY; Somani MC Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921 [TBL] [Abstract][Full Text] [Related]
14. Role of Impurity Sulphur in the Ductility Trough of Austenitic Iron-Nickel Alloys. Christien F Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979217 [TBL] [Abstract][Full Text] [Related]
15. Experimental Study on Liquid Metal Embrittlement of Al-Zn-Mg Aluminum Alloy (7075): From Macromechanical Property Experiment to Microscopic Characterization. Zhang D; Cai K; Zheng J; Feng H; Song P; Hu H; Mao Z Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591479 [TBL] [Abstract][Full Text] [Related]
16. The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires. Li J; Lu C; Wang L; Pei L; Godbole A; Michal G Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498659 [TBL] [Abstract][Full Text] [Related]
17. In Situ Micro-Observation of Surface Roughness and Fracture Mechanism in Metal Microforming of Thin Copper Sheets with Newly Developed Compact Testing Apparatus. Singh M; Sharma S; Muniappan A; Pimenov DY; Wojciechowski S; Jha K; Dwivedi SP; Li C; Królczyk JB; Walczak D; Nguyen TVT Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207905 [TBL] [Abstract][Full Text] [Related]
18. In-situ SEM micropillar compression of porous and dense zirconia materials. Juri AZ; Basak AK; Yin L J Mech Behav Biomed Mater; 2022 Aug; 132():105268. PubMed ID: 35598562 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties. Yin C; Chen J; Ye D; Xu Z; Ge J; Zhou H Materials (Basel); 2020 May; 13(10):. PubMed ID: 32422989 [TBL] [Abstract][Full Text] [Related]
20. Deciphering Hydrogen Embrittlement Mechanisms in Ti6Al4V Alloy: Role of Solute Hydrogen and Hydride Phase. Nguyen TD; Singh C; Lee DH; Kim YS; Lee T; Lee SY Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]