BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32358055)

  • 1.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2020 May; 2020(5):100743. PubMed ID: 32358055
    [No Abstract]   [Full Text] [Related]  

  • 2. Labeling 3' Termini of Double-Stranded DNA Using the Klenow Fragment of
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2020 May; 2020(5):100651. PubMed ID: 32358054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the 5' --> 3' exonuclease and Klenow fragment of Escherichia coli DNA polymerase I in base mismatch repair.
    Imai M; Tago Y; Ihara M; Kawata M; Yamamoto K
    Mol Genet Genomics; 2007 Aug; 278(2):211-20. PubMed ID: 17457612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.
    Freemont PS; Ollis DL; Steitz TA; Joyce CM
    Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and catalytic insights into HoLaMa, a derivative of Klenow DNA polymerase lacking the proofreading domain.
    Kovermann M; Stefan A; Castaldo A; Caramia S; Hochkoeppler A
    PLoS One; 2019; 14(4):e0215411. PubMed ID: 30970012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HoLaMa: A Klenow sub-fragment lacking the 3'-5' exonuclease domain.
    Martina CE; Lapenta F; Montón Silva A; Hochkoeppler A
    Arch Biochem Biophys; 2015 Jun; 575():46-53. PubMed ID: 25906742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the 3',5' thiophosphoryl linkage on the exonuclease activities of T4 polymerase and the Klenow fragment.
    Gupta AP; Benkovic PA; Benkovic SJ
    Nucleic Acids Res; 1984 Jul; 12(14):5897-911. PubMed ID: 6087297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of DNA polymerase I Klenow fragment bound to duplex DNA.
    Beese LS; Derbyshire V; Steitz TA
    Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realizing directional cloning using sticky ends produced by 3'-5' exonuclease of Klenow fragment.
    Zhao G; Li J; Hu T; Wei H; Guan Y
    J Biosci; 2013 Dec; 38(5):857-66. PubMed ID: 24296888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.
    Cowart M; Gibson KJ; Allen DJ; Benkovic SJ
    Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifunctional DNA polymerase I involves in the maturation of Okazaki fragments during the lagging-strand DNA synthesis in Helicobacter pylori.
    Cheng YW; Chen CY
    FEBS J; 2021 Feb; 288(3):884-901. PubMed ID: 32484277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dependence of 3'-5-exonuclease activity of a fragment of Klenow DNA polymerase I from Escherichia coli on the length and structure of the cleaved oligonucleotide].
    Khalabuda OV; Nevinskiĭ GA; Levina AS; Gorn VV; Khomov VV
    Mol Biol (Mosk); 1990; 24(5):1219-29. PubMed ID: 1963205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment).
    Joyce CM
    J Biol Chem; 1989 Jun; 264(18):10858-66. PubMed ID: 2659595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3'-end labeling of DNA fragments by AMV-reverse transcriptase.
    Oyama F; Kikuchi R; Omori A; Uchida T
    Nucleic Acids Symp Ser; 1988; (19):115-6. PubMed ID: 2465535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.