BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32358189)

  • 21. Stereocilin-deficient mice reveal the origin of cochlear waveform distortions.
    Verpy E; Weil D; Leibovici M; Goodyear RJ; Hamard G; Houdon C; Lefèvre GM; Hardelin JP; Richardson GP; Avan P; Petit C
    Nature; 2008 Nov; 456(7219):255-8. PubMed ID: 18849963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unitary ototoxic gentamicin exposure may not disrupt the function of cochlear outer hair cells in mice.
    Zhao N; Tai X; Zhai L; Shi L; Chen D; Yang B; Ji F; Hou K; Yang S; Gong S; Liu K
    Acta Otolaryngol; 2017 Aug; 137(8):842-849. PubMed ID: 28332931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two classes of outer hair cells along the tonotopic axis of the cochlea.
    Engel J; Braig C; Rüttiger L; Kuhn S; Zimmermann U; Blin N; Sausbier M; Kalbacher H; Münkner S; Rohbock K; Ruth P; Winter H; Knipper M
    Neuroscience; 2006 Dec; 143(3):837-49. PubMed ID: 17074442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inner hair cell stereocilia are embedded in the tectorial membrane.
    Hakizimana P; Fridberger A
    Nat Commun; 2021 May; 12(1):2604. PubMed ID: 33972539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in distortion product otoacoustic emissions and outer hair cells following interrupted noise exposures.
    Subramaniam M; Salvi RJ; Spongr VP; Henderson D; Powers NL
    Hear Res; 1994 Apr; 74(1-2):204-16. PubMed ID: 8040089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporary and permanent noise-induced changes in distortion product otoacoustic emissions in CBA/CaJ mice.
    Vázquez AE; Luebke AE; Martin GK; Lonsbury-Martin BL
    Hear Res; 2001 Jun; 156(1-2):31-43. PubMed ID: 11377880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects.
    Cheatham MA
    Hear Res; 2021 Sep; 409():108314. PubMed ID: 34332206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency specificity of distortion-product otoacoustic emissions produced by high-level tones despite inefficient cochlear electromechanical feedback.
    Carvalho S; Mom T; Gilain L; Avan P
    J Acoust Soc Am; 2004 Sep; 116(3):1639-48. PubMed ID: 15478430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sound preprocessing by ac and dc movements of cochlear outer hair cells.
    Zenner HP; Ernst A
    Prog Brain Res; 1993; 97():21-30. PubMed ID: 8234747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient Abnormalities in Masking Tuning Curve in Early Progressive Hearing Loss Mouse Model.
    Souchal M; Labanca L; Alves da Silva Carvalho S; Macedo de Resende L; Blavignac C; Avan P; Giraudet F
    Biomed Res Int; 2018; 2018():6280969. PubMed ID: 29662891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the stereocilia side links and morphology of auditory hair bundle in relation to noise exposure in the chinchilla.
    Tsuprun V; Schachern PA; Cureoglu S; Paparella M
    J Neurocytol; 2003 Nov; 32(9):1117-28. PubMed ID: 15044843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How are inner hair cells stimulated? Evidence for multiple mechanical drives.
    Guinan JJ
    Hear Res; 2012 Oct; 292(1-2):35-50. PubMed ID: 22959529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness.
    Carlton AJ; Halford J; Underhill A; Jeng JY; Avenarius MR; Gilbert ML; Ceriani F; Ebisine K; Brown SDM; Bowl MR; Barr-Gillespie PG; Marcotti W
    J Physiol; 2021 Feb; 599(4):1173-1198. PubMed ID: 33151556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells.
    Jeng JY; Johnson SL; Carlton AJ; De Tomasi L; Goodyear RJ; De Faveri F; Furness DN; Wells S; Brown SDM; Holley MC; Richardson GP; Mustapha M; Bowl MR; Marcotti W
    J Physiol; 2020 Sep; 598(18):3891-3910. PubMed ID: 32608086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is there a close relationship between changes in amplitudes of distortion product otoacoustic emissions and hair cell damage after exposure to realistic industrial noise in guinea pigs?
    Linss V; Emmerich E; Richter F; Linss W
    Eur Arch Otorhinolaryngol; 2005 Jun; 262(6):488-95. PubMed ID: 15592860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent regulation of prestin expression in mouse outer hair cells.
    Song Y; Xia A; Lee HY; Wang R; Ricci AJ; Oghalai JS
    J Neurophysiol; 2015 Jun; 113(10):3531-42. PubMed ID: 25810486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of hearing sensitivity by tectorial membrane calcium.
    Strimbu CE; Prasad S; Hakizimana P; Fridberger A
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5756-5764. PubMed ID: 30837312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.