BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32358189)

  • 41. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and properties of stereociliary link types in hair cells of the mouse cochlea.
    Goodyear RJ; Marcotti W; Kros CJ; Richardson GP
    J Comp Neurol; 2005 Apr; 485(1):75-85. PubMed ID: 15776440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of outer hair cell stereocilia links in the chinchilla.
    Tsuprun V; Santi P
    J Neurocytol; 1998; 27(7):517-28. PubMed ID: 11246491
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness.
    Schoen CJ; Burmeister M; Lesperance MM
    PLoS One; 2013; 8(2):e56520. PubMed ID: 23441200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers.
    Maison SF; Casanova E; Holstein GR; Bettler B; Liberman MC
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):50-63. PubMed ID: 18925381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice.
    Dewey JB; Shera CA
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):305-324. PubMed ID: 37072566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.
    Cheatham MA; Goodyear RJ; Homma K; Legan PK; Korchagina J; Naskar S; Siegel JH; Dallos P; Zheng J; Richardson GP
    J Neurosci; 2014 Jul; 34(31):10325-38. PubMed ID: 25080593
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [High-resolution distortion-product otoacoustic emissions: method and clinical applications].
    Janssen T; Lodwig A; Müller J; Oswald H
    HNO; 2014 Oct; 62(10):718-24. PubMed ID: 25270969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment criteria for rotated stereociliary bundles in the guinea pig cochlea.
    Li S; Zhang SQ; Liu SW; Li BY; Zhu HL; Yu H; Zheng QY
    Otol Neurotol; 2008 Jan; 29(1):86-92. PubMed ID: 18199962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted.
    Bowling T; Wen H; Meenderink SWF; Dong W; Meaud J
    Sci Rep; 2021 Jul; 11(1):13651. PubMed ID: 34211051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear outer hair cells in a dominant-negative connexin26 mutant mouse preserve non-linear capacitance in spite of impaired distortion product otoacoustic emission.
    Minekawa A; Abe T; Inoshita A; Iizuka T; Kakehata S; Narui Y; Koike T; Kamiya K; Okamura HO; Shinkawa H; Ikeda K
    Neuroscience; 2009 Dec; 164(3):1312-9. PubMed ID: 19712724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relation of distortion product otoacoustic emission and tinnitus in normal hearing patients: a pilot study.
    Modh D; Katarkar A; Alam N; Jain A; Shah P
    Noise Health; 2014; 16(69):69-72. PubMed ID: 24804709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss.
    Manohar S; Ding D; Jiang H; Li L; Chen GD; Kador P; Salvi R
    Hear Res; 2022 Feb; 414():108409. PubMed ID: 34953289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea.
    Tsuprun V; Santi P
    J Histochem Cytochem; 2002 Apr; 50(4):493-502. PubMed ID: 11897802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elmod3 knockout leads to progressive hearing loss and abnormalities in cochlear hair cell stereocilia.
    Li W; Feng Y; Chen A; Li T; Huang S; Liu J; Liu X; Liu Y; Gao J; Yan D; Sun J; Mei L; Liu X; Ling J
    Hum Mol Genet; 2019 Dec; 28(24):4103-4112. PubMed ID: 31628468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A DPOAE assessment of outer hair cell integrity in ears with age-related hearing loss.
    Ueberfuhr MA; Fehlberg H; Goodman SS; Withnell RH
    Hear Res; 2016 Feb; 332():137-150. PubMed ID: 26631688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Progress in cochlear physiology after Békésy.
    Guinan JJ; Salt A; Cheatham MA
    Hear Res; 2012 Nov; 293(1-2):12-20. PubMed ID: 22633944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CD1 hearing-impaired mice. II. Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy.
    Le Calvez S; Guilhaume A; Romand R; Aran JM; Avan P
    Hear Res; 1998 Jun; 120(1-2):51-61. PubMed ID: 9667430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice.
    Hamaguchi K; Yamamoto N; Nakagawa T; Furuyashiki T; Narumiya S; Ito J
    Neuropharmacology; 2012 Mar; 62(4):1841-7. PubMed ID: 22198478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.