BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32358531)

  • 1. Ultrathin 2 nm gold as impedance-matched absorber for infrared light.
    Luhmann N; Høj D; Piller M; Kähler H; Chien MH; West RG; Andersen UL; Schmid S
    Nat Commun; 2020 May; 11(1):2161. PubMed ID: 32358531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabroadband hot-hole photodetector based on ultrathin gold film.
    Zheng JR; You EM; Hu YF; Yi J; Tian ZQ
    Nanoscale; 2023 May; 15(19):8863-8869. PubMed ID: 37128810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of a Broadband Microwave Composite Thin Film Absorber.
    Zhang Y; Gao Y; Yang S; Li Z; Wang X; Zhang J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super broadband mid-infrared absorbers with ultrathin folded highly-lossy films.
    Zhang H; Wu H; Li X; Hao J; Li Q; Guan Z; Xu H; Liu C
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):254-262. PubMed ID: 36155920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Fabrication of a Multi-Layer Planar Solar Light Absorber Achieving High Absorptivity and Ultra-Wideband Response from Visible Light to Infrared.
    Yang CF; Wang CH; Ke PX; Meen TH; Lai KK
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold-black phosphorus nanostructured absorbers for efficient light trapping in the mid-infrared.
    Audhkhasi R; Povinelli ML
    Opt Express; 2020 Jun; 28(13):19562-19570. PubMed ID: 32672230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber.
    Grant J; McCrindle IJ; Cumming DR
    Opt Express; 2016 Feb; 24(4):3451-63. PubMed ID: 26907004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Film Flip and Transfer Process to Enhance Light Harvesting in Ultrathin Absorber Films on Specular Back-Reflectors.
    Kay A; Scherrer B; Piekner Y; Malviya KD; Grave DA; Dotan H; Rothschild A
    Adv Mater; 2018 Aug; 30(35):e1802781. PubMed ID: 29987900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subwavelength perforated absorbers for infrared detectors.
    Cetın R; Erturk O
    Opt Express; 2020 Oct; 28(22):33699-33707. PubMed ID: 33115029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer.
    Jung JY; Song K; Choi JH; Lee J; Choi DG; Jeong JH; Neikirk DP
    Sci Rep; 2017 Mar; 7(1):430. PubMed ID: 28348372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process.
    Huang TY; Tseng CW; Yeh TT; Yeh TT; Luo CW; Akalin T; Yen TJ
    Sci Rep; 2015 Dec; 5():18605. PubMed ID: 26690846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically tunable perfect light absorbers as color filters and modulators.
    Mirshafieyan SS; Gregory DA
    Sci Rep; 2018 Feb; 8(1):2635. PubMed ID: 29422631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaching the lowest operating frequency thickness limits with complex surface impedance of ultrathin absorbers.
    Li R; Dong J; Si K; He F; Zha D; Miao L; Bie S; Jiang J
    Opt Express; 2021 Feb; 29(3):4442-4452. PubMed ID: 33771022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector.
    Pan Y; Tagliabue G; Eghlidi H; Höller C; Dröscher S; Hong G; Poulikakos D
    Sci Rep; 2016 Nov; 6():37564. PubMed ID: 27874075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers.
    Kuznetsov SA; Paulish AG; Navarro-Cía M; Arzhannikov AV
    Sci Rep; 2016 Feb; 6():21079. PubMed ID: 26879250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Terahertz Optomechanical Detector Based on Metasurface and Bi-Material Micro-Cantilevers.
    Zhu H; Wang K; Liu G; Wang G; Mou J; Zhang W; Wei G
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.