These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32358545)

  • 1. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules.
    Smith JS; Zubatyuk R; Nebgen B; Lubbers N; Barros K; Roitberg AE; Isayev O; Tretiak S
    Sci Data; 2020 May; 7(1):134. PubMed ID: 32358545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-level machine learning calculations of Levodopa.
    Shirani H; Hashemianzadeh SM
    Comput Biol Chem; 2024 Oct; 112():108146. PubMed ID: 39067350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Energies Derived from Deep Learning: Application to the Prediction of Formation Enthalpies Up to High Energy Compounds.
    Mathieu D
    Mol Inform; 2022 May; 41(5):e2100064. PubMed ID: 34894091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning.
    Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE
    Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods.
    Zheng P; Yang W; Wu W; Isayev O; Dral PO
    J Phys Chem Lett; 2022 Apr; 13(15):3479-3491. PubMed ID: 35416675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Scalable Molecular Force Field Parameterization Method Based on Density Functional Theory and Quantum-Level Machine Learning.
    Galvelis R; Doerr S; Damas JM; Harvey MJ; De Fabritiis G
    J Chem Inf Model; 2019 Aug; 59(8):3485-3493. PubMed ID: 31322877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Less is more: Sampling chemical space with active learning.
    Smith JS; Nebgen B; Lubbers N; Isayev O; Roitberg AE
    J Chem Phys; 2018 Jun; 148(24):241733. PubMed ID: 29960353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Minimum Quantum Chemistry CCSD(T)/CBS Data Set of Dimeric Interaction Energies for Small Organic Functional Groups: Heterodimers.
    Huang HH; Wang YS; Chao SD
    ACS Omega; 2022 Jun; 7(23):20059-20080. PubMed ID: 35722020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated discovery of a robust interatomic potential for aluminum.
    Smith JS; Nebgen B; Mathew N; Chen J; Lubbers N; Burakovsky L; Tretiak S; Nam HA; Germann T; Fensin S; Barros K
    Nat Commun; 2021 Feb; 12(1):1257. PubMed ID: 33623036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network atomistic potentials for global energy minima search in carbon clusters.
    Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI
    Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery.
    Zeng J; Tao Y; Giese TJ; York DM
    J Chem Theory Comput; 2023 Feb; 19(4):1261-1275. PubMed ID: 36696673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.