BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32358649)

  • 1. Biodegradation of phenol by Chlamydomonas reinhardtii.
    Nazos TT; Mavroudakis L; Pergantis SA; Ghanotakis DF
    Photosynth Res; 2020 Jun; 144(3):383-395. PubMed ID: 32358649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of xenobiotics by Chlamydomonas reinhardtii: Phenol degradation under conditions affecting photosynthesis.
    Nazos TT; Kokarakis EJ; Ghanotakis DF
    Photosynth Res; 2017 Jan; 131(1):31-40. PubMed ID: 27422703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells.
    Nazos TT; Ghanotakis DF
    Arch Microbiol; 2021 Nov; 203(9):5805-5816. PubMed ID: 34528110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds: exogenously supplied energy and carbon sources adjust the level of biodegradation.
    Papazi A; Kotzabasis K
    J Biotechnol; 2007 May; 129(4):706-16. PubMed ID: 17403549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergetic strategy for the biodegradation of p-cresol by the unicellular green alga Scenedesmus obliquus.
    Papazi A; Assimakopoulos K; Kotzabasis K
    PLoS One; 2012; 7(12):e51852. PubMed ID: 23251641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.
    Martín del Campo JS; Patiño R
    Biotechnol Bioeng; 2013 Dec; 110(12):3227-34. PubMed ID: 23797775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus - The biodegradation strategy of microalgae.
    Papazi A; Karamanli M; Kotzabasis K
    J Biotechnol; 2019 Apr; 296():61-68. PubMed ID: 30890327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity, Biodegradation, and Metabolic Fate of Organophosphorus Pesticide Trichlorfon on the Freshwater Algae
    Wan L; Wu Y; Ding H; Zhang W
    J Agric Food Chem; 2020 Feb; 68(6):1645-1653. PubMed ID: 31972072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii.
    Cogne G; Rügen M; Bockmayr A; Titica M; Dussap CG; Cornet JF; Legrand J
    Biotechnol Prog; 2011; 27(3):631-40. PubMed ID: 21567987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress.
    Wang Y; Yu J; Wang P; Deng S; Chang J; Ran Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5762-5770. PubMed ID: 29230652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity, biodegradation of moxifloxacin and gatifloxacin on Chlamydomonas reinhardtii and their metabolic fate.
    Wan L; Wu Y; Zhang Y; Zhang W
    Ecotoxicol Environ Saf; 2022 Jul; 240():113711. PubMed ID: 35653971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation.
    Liu Y; Wang W; Shah SB; Zanaroli G; Xu P; Tang H
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):427-437. PubMed ID: 31822982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01
    Filipowicz N; Momotko M; Boczkaj G; Cieśliński H
    Enzyme Microb Technol; 2020 Nov; 141():109663. PubMed ID: 33051016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis reveals the molecular mechanisms by which carbon dots regulate the growth of Chlamydomonas reinhardtii.
    Xue H; Dong Y; Li Z; Wang J; Yuan X; He F; Li Z; Gao X; Liu J
    J Colloid Interface Sci; 2023 Nov; 649():22-35. PubMed ID: 37331107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.
    Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.
    Comte A; Christen P; Davidson S; Pophillat M; Lorquin J; Auria R; Simon G; Casalot L
    PLoS One; 2013; 8(12):e82397. PubMed ID: 24349276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme.
    Iwasaki Y; Gunji H; Kino K; Hattori T; Ishii Y; Kirimura K
    Biodegradation; 2010 Jul; 21(4):557-64. PubMed ID: 20020317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenol in static cultures by Penicillium chrysogenum ERK1: catalytic abilities and residual phytotoxicity.
    Wolski EA; Barrera V; Castellari C; González JF
    Rev Argent Microbiol; 2012; 44(2):113-21. PubMed ID: 22997771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide.
    Park JY; Hong JW; Gadd GM
    Chemosphere; 2009 May; 75(6):765-71. PubMed ID: 19211129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.