These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32358671)

  • 1. Stimulus-effect relations for left ventricular growth obtained with a simple multi-scale model: the influence of hemodynamic feedback.
    Rondanina E; Bovendeerd PHM
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2111-2126. PubMed ID: 32358671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of stimulus-effect relations in left ventricular growth using a simple multiscale model.
    Rondanina E; Bovendeerd PHM
    Biomech Model Mechanobiol; 2020 Feb; 19(1):263-273. PubMed ID: 31388869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of hemodynamic load components affecting optimization of cardiac resynchronization therapy by lumped parameter mode.
    Xu K; Butlin M; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6661-4. PubMed ID: 23367457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the relation between cardiac pump function and myofiber mechanics.
    Arts T; Bovendeerd P; Delhaas T; Prinzen F
    J Biomech; 2003 May; 36(5):731-6. PubMed ID: 12695003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale simulation of the effects of atrioventricular block and valve diseases on heart performance.
    Syomin FA; Zberia MV; Tsaturyan AK
    Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3216. PubMed ID: 31083764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of the hemodynamic determinants of myocardial oxygen supply and demand.
    Schwid HA; Buffington CW; Strum DP
    J Cardiothorac Anesth; 1990 Feb; 4(1):5-18. PubMed ID: 2131857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of the effect of mitral and aortic regurgitation on the function of ventricular assist devices using 3D cardiac electromechanical model.
    Kim YS; Yuniarti AR; Song KS; Trayanova NA; Shim EB; Lim KM
    Med Biol Eng Comput; 2018 May; 56(5):889-898. PubMed ID: 29080191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis.
    Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S
    Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental mitral regurgitation. Physiological effects of correction on left ventricular dynamics.
    Spratt JA; Olsen CO; Tyson GS; Glower DD; Davis JW; Rankin JS
    J Thorac Cardiovasc Surg; 1983 Oct; 86(4):479-89. PubMed ID: 6621079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy.
    Li JK; Zhu JY; Nanna M
    Comput Biol Med; 1997 Nov; 27(6):477-85. PubMed ID: 9437549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study.
    Kerckhoffs RC; Bovendeerd PH; Kotte JC; Prinzen FW; Smits K; Arts T
    Ann Biomed Eng; 2003 May; 31(5):536-47. PubMed ID: 12757198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumped-Parameter and Finite Element Modeling of Heart Failure with Preserved Ejection Fraction.
    Rosalia L; Ozturk C; Roche ET
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of chronic mitral regurgitation.
    Razzolini R; Viena P; Degan F; Chioin R; Carasi M; Vaccari D; Vendrametto F; Dalla-Volta S
    Jpn Heart J; 1995 Sep; 36(5):605-16. PubMed ID: 8558765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricular mechanical load and contractile function in patients with chronic mitral regurgitation.
    Laskey WK; Plappert TA; Sutton MG
    J Heart Valve Dis; 2007 May; 16(3):247-54. PubMed ID: 17578043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions of hypertrophy and its regression in response to pressure overload.
    Yoshida K; McCulloch AD; Omens JH; Holmes JW
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1079-1089. PubMed ID: 31813071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model order reduction for left ventricular mechanics via congruency training.
    Di Achille P; Parikh J; Khamzin S; Solovyova O; Kozloski J; Gurev V
    PLoS One; 2020; 15(1):e0219876. PubMed ID: 31905197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Windkessel model of hemodynamic state supported by a pulsatile ventricular assist device in premature ventricle contraction.
    Her K; Kim JY; Lim KM; Choi SW
    Biomed Eng Online; 2018 Feb; 17(1):18. PubMed ID: 29394944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The concept of preload and its evaluation in the intact left ventricle.
    Razzolini R; Boffa GM; Ramondo A; Daliento L; Stritoni P; Chioin R; Dalla-Volta S
    Jpn Heart J; 1990 Jan; 31(1):1-13. PubMed ID: 2335841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for the measurement of left ventricular overload for combined aortic valve pathology.
    Travis BR; Fowler BL; Robicsek F
    J Heart Valve Dis; 2009 Sep; 18(5):499-506. PubMed ID: 20099690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.