BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32358750)

  • 1. Mobility and transformation of Cr(VI) on the surface of goethite in the presence of oxalic acid and Mn(II).
    Liang C; Tang B; Zhang X; Fu F
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26115-26124. PubMed ID: 32358750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transformation of Cr(VI)-adsorbed ferrihydrite in the presence of Mn(II): Fate of Mn(II) and Cr(VI).
    Ding Z; Sun G; Fu F; Ye C
    J Environ Sci (China); 2022 Mar; 113():251-259. PubMed ID: 34963533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating.
    Luo Y; Ding J; Hai J; Tan W; Hao R; Qiu G
    Environ Pollut; 2020 May; 260():114046. PubMed ID: 32014747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goethite catalyzed Cr(VI) reduction by tartaric acid via surface adsorption.
    Zhang Y; Yang J; Du J; Xing B
    Ecotoxicol Environ Saf; 2019 Apr; 171():594-599. PubMed ID: 30658294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging.
    Liang C; Fu F; Tang B
    J Hazard Mater; 2021 Sep; 417():126073. PubMed ID: 34020359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of Cr(III) on birnessite surfaces: The effect of goethite and kaolinite.
    Zhong L; Yang J; Liu L; Xing B
    J Environ Sci (China); 2015 Nov; 37():8-14. PubMed ID: 26574083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of Mn(II) on transformation of Cr-absorbed Schwertmannite: Mineral phase transition and elemental fate.
    Tang H; Chen M; Wu P; Li Y; Wang T; Wu J; Sun L; Shang Z
    Water Res; 2024 Jun; 257():121656. PubMed ID: 38677110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ; Ginder-Vogel M
    J Environ Qual; 2018 Jan; 47(1):139-146. PubMed ID: 29415106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-redox and simultaneous removal of Cr(VI) and As(III): Influences of Fe(II), Fe(III), oxalic acid, and dissolved organic carbon.
    Ng KH; Hsu LC; Liu YT; Hsiao CY; Chiang PN; Teah HY; Hung JT; Tzou YM
    Ecotoxicol Environ Saf; 2022 Oct; 245():114084. PubMed ID: 36152429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa.
    Li Y; Wang H; Wu P; Yu L; Rehman S; Wang J; Yang S; Zhu N
    Environ Pollut; 2020 Oct; 265(Pt B):114765. PubMed ID: 32454358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH.
    Samarghandi MR; Yang JK; Giahi O; Shirzad-Siboni M
    Environ Technol; 2015; 36(9-12):1132-40. PubMed ID: 25367257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive Sequestration of Cr(VI) and Immobilization of C during the Microbially Mediated Transformation of Ferrihydrite-Cr(VI)-Fulvic Acid Coprecipitates.
    Hu S; Zhang H; Yang Y; Wang W; Zhou W; Shen X; Liu C
    Environ Sci Technol; 2023 Jun; 57(22):8323-8334. PubMed ID: 37216216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms.
    Zhang X; Zhang L; Liu Y; Li M; Wu X; Jiang T; Chen C; Peng Y
    Environ Pollut; 2020 Jul; 262():114184. PubMed ID: 32193078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite.
    Jiang D; Li Y; Wu Y; Zhou P; Lan Y; Zhou L
    Chemosphere; 2012 Oct; 89(7):832-7. PubMed ID: 22652441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxalic acid on Cr(VI) reduction by phenols in ice.
    Wang N; Zhong Y; Kang C; Tian T; Wang Y; Xiao K; Shang D
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29780-29788. PubMed ID: 31402437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic reduction of Cr(VI) by citric and oxalic acids over biogenetic jarosite.
    Xu Z; Bai S; Liang J; Zhou L; Lan Y
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2192-6. PubMed ID: 23498247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.