These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 32358752)
1. Transfer learning for neural network model in chlorophyll-a dynamics prediction by Wenchong Tian, Zhenliang Liao, and Xuan Wang. Adnan RM; Kisi O Environ Sci Pollut Res Int; 2020 Aug; 27(24):30899-30900. PubMed ID: 32358752 [No Abstract] [Full Text] [Related]
2. Responses to the letter on "Transfer learning for neural network model in Chlorophyll-a dynamics prediction". Liao Z; Tian W; Wang X Environ Sci Pollut Res Int; 2020 Nov; 27(31):39667-39668. PubMed ID: 32623672 [No Abstract] [Full Text] [Related]
3. Transfer learning for neural network model in chlorophyll-a dynamics prediction. Tian W; Liao Z; Wang X Environ Sci Pollut Res Int; 2019 Oct; 26(29):29857-29871. PubMed ID: 31410825 [TBL] [Abstract][Full Text] [Related]
4. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Yi HS; Park S; An KG; Kwak KC Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30248912 [TBL] [Abstract][Full Text] [Related]
5. Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient. Graban S; Dall'Olmo G; Goult S; Sauzède R Opt Express; 2020 Aug; 28(16):24214-24228. PubMed ID: 32752404 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll Keller S; Maier PM; Riese FM; Norra S; Holbach A; Börsig N; Wilhelms A; Moldaenke C; Zaake A; Hinz S Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30200256 [TBL] [Abstract][Full Text] [Related]
7. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China. Liu Y; Xi DG; Li ZL PLoS One; 2015; 10(3):e0119082. PubMed ID: 25768650 [TBL] [Abstract][Full Text] [Related]
8. A programmable neural virtual machine based on a fast store-erase learning rule. Katz GE; Davis GP; Gentili RJ; Reggia JA Neural Netw; 2019 Nov; 119():10-30. PubMed ID: 31376635 [TBL] [Abstract][Full Text] [Related]
9. Learning epidemic threshold in complex networks by Convolutional Neural Network. Ni Q; Kang J; Tang M; Liu Y; Zou Y Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Heo J; Yoon JG; Park H; Kim YD; Nam HS; Heo JH Stroke; 2019 May; 50(5):1263-1265. PubMed ID: 30890116 [TBL] [Abstract][Full Text] [Related]
11. Effects of Food Contamination on Gastrointestinal Morbidity: Comparison of Different Machine-Learning Methods. Song Q; Zheng YJ; Yang J Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30866562 [TBL] [Abstract][Full Text] [Related]
12. Geometry of Energy Landscapes and the Optimizability of Deep Neural Networks. Becker S; Zhang Y; Lee AA Phys Rev Lett; 2020 Mar; 124(10):108301. PubMed ID: 32216422 [TBL] [Abstract][Full Text] [Related]
13. Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy. Jin X; Zhao X; Yu J; Wu X; Chi J Neural Netw; 2020 Jan; 121():474-483. PubMed ID: 31630087 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Currie G; Hawk KE; Rohren E; Vial A; Klein R J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480 [TBL] [Abstract][Full Text] [Related]
15. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data. López-García G; Jerez JM; Franco L; Veredas FJ PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348 [TBL] [Abstract][Full Text] [Related]
16. Putting a bug in ML: The moth olfactory network learns to read MNIST. Delahunt CB; Kutz JN Neural Netw; 2019 Oct; 118():54-64. PubMed ID: 31228724 [TBL] [Abstract][Full Text] [Related]
17. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
18. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. Zhang Y; Hu C; Jiang B J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157 [TBL] [Abstract][Full Text] [Related]
19. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
20. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation. Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]