These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32358752)

  • 21. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Leivo I; Almangush A
    Virchows Arch; 2019 Oct; 475(4):489-497. PubMed ID: 31422502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.
    Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S
    Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning for risk assessment: all about automatic feature extraction.
    Cosgriff CV; Celi LA
    Br J Anaesth; 2020 Feb; 124(2):131-133. PubMed ID: 31813571
    [No Abstract]   [Full Text] [Related]  

  • 24. Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery.
    Choi HI; Jung SK; Baek SH; Lim WH; Ahn SJ; Yang IH; Kim TW
    J Craniofac Surg; 2019 Oct; 30(7):1986-1989. PubMed ID: 31205280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne
    Zewdie GK; Lary DJ; Levetin E; Garuma GF
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31167504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Rank Deep Convolutional Neural Network for Multitask Learning.
    Su F; Shang HY; Wang JY
    Comput Intell Neurosci; 2019; 2019():7410701. PubMed ID: 31236107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database.
    Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T
    J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Influenza A Tropism with End-to-End Learning of Deep Networks.
    Scarafoni D; Telfer BA; Ricke DO; Thornton JR; Comolli J
    Health Secur; 2019; 17(6):468-476. PubMed ID: 31859569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breast Cancer Diagnosis in Digital Breast Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep Neural Nets.
    Samala RK; Heang-Ping Chan ; Hadjiiski L; Helvie MA; Richter CD; Cha KH
    IEEE Trans Med Imaging; 2019 Mar; 38(3):686-696. PubMed ID: 31622238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depth with nonlinearity creates no bad local minima in ResNets.
    Kawaguchi K; Bengio Y
    Neural Netw; 2019 Oct; 118():167-174. PubMed ID: 31295691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. StressGenePred: a twin prediction model architecture for classifying the stress types of samples and discovering stress-related genes in arabidopsis.
    Kang D; Ahn H; Lee S; Lee CJ; Hur J; Jung W; Kim S
    BMC Genomics; 2019 Dec; 20(Suppl 11):949. PubMed ID: 31856731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides.
    Damiati SA; Alaofi AL; Dhar P; Alhakamy NA
    Int J Pharm; 2019 Aug; 567():118453. PubMed ID: 31233847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Quantitative retrieval of chlorophyll a concentration in Taihu Lake using machine learning methods].
    Zhang YC; Qian X; Qian Y; Liu JP; Kong FX
    Huan Jing Ke Xue; 2009 May; 30(5):1321-8. PubMed ID: 19558096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Role of artificial intelligence in the diagnosis and treatment of gastrointestinal diseases].
    Yu YY
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jan; 23(1):33-37. PubMed ID: 31958928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study of machine learning classifiers for risk prediction of asthma disease.
    Ullah R; Khan S; Ali H; Chaudhary II; Bilal M; Ahmad I
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():292-296. PubMed ID: 31614223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extreme learning machine for a new hybrid morphological/linear perceptron.
    Sussner P; Campiotti I
    Neural Netw; 2020 Mar; 123():288-298. PubMed ID: 31891839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.