These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32359146)

  • 1. Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans.
    Woodruff GC; Teterina AA
    Mol Biol Evol; 2020 Sep; 37(9):2549-2567. PubMed ID: 32359146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of differential transposition activities of autonomous and nonautonomous hAT transposable elements on genome architecture and gene expression in Caenorhabditis inopinata.
    Hatanaka R; Tamagawa K; Haruta N; Sugimoto A
    Genetics; 2024 Jun; 227(2):. PubMed ID: 38577765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans.
    Woodruff GC; Willis JH; Phillips PC
    Genome Biol Evol; 2024 Feb; 16(2):. PubMed ID: 38302111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentially Expressed Genes Associated with Body Size Changes and Transposable Element Insertions between Caenorhabditis elegans and Its Sister Species, Caenorhabditis inopinata.
    Kawahara K; Inada T; Tanaka R; Dayi M; Makino T; Maruyama S; Kikuchi T; Sugimoto A; Kawata M
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 37071793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes.
    Fierst JL; Willis JH; Thomas CG; Wang W; Reynolds RM; Ahearne TE; Cutter AD; Phillips PC
    PLoS Genet; 2015 Jun; 11(6):e1005323. PubMed ID: 26114425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes.
    Teterina AA; Willis JH; Lukac M; Jovelin R; Cutter AD; Phillips PC
    PLoS Genet; 2023 Aug; 19(8):e1010879. PubMed ID: 37585484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome-Level Assembly of the
    Teterina AA; Willis JH; Phillips PC
    Genetics; 2020 Apr; 214(4):769-780. PubMed ID: 32111628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.
    Stein LD; Bao Z; Blasiar D; Blumenthal T; Brent MR; Chen N; Chinwalla A; Clarke L; Clee C; Coghlan A; Coulson A; D'Eustachio P; Fitch DH; Fulton LA; Fulton RE; Griffiths-Jones S; Harris TW; Hillier LW; Kamath R; Kuwabara PE; Mardis ER; Marra MA; Miner TL; Minx P; Mullikin JC; Plumb RW; Rogers J; Schein JE; Sohrmann M; Spieth J; Stajich JE; Wei C; Willey D; Wilson RK; Durbin R; Waterston RH
    PLoS Biol; 2003 Nov; 1(2):E45. PubMed ID: 14624247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Caenorhabditis elegans transposon Tc1.
    Harris LJ; Prasad S; Rose AM
    J Mol Evol; 1990 Apr; 30(4):359-69. PubMed ID: 2161057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bergerac strains of Caenorhabditis elegans revisited: expansion of Tc1 elements imposes a significant genomic and fitness cost.
    Daigle AT; Deiss TC; Melde RH; Bergthorsson U; Katju V
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 35977391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern.
    Rose AM; O'Neil NJ; Bilenky M; Butterfield YS; Malhis N; Flibotte S; Jones MR; Marra M; Baillie DL; Jones SJ
    BMC Genomics; 2010 Feb; 11():131. PubMed ID: 20178641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny.
    Hillier LW; Miller RD; Baird SE; Chinwalla A; Fulton LA; Koboldt DC; Waterston RH
    PLoS Biol; 2007 Jul; 5(7):e167. PubMed ID: 17608563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field studies reveal a close relative of C. elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps.
    Woodruff GC; Phillips PC
    BMC Ecol; 2018 Aug; 18(1):26. PubMed ID: 30129423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biology and genome of a newly discovered sibling species of Caenorhabditis elegans.
    Kanzaki N; Tsai IJ; Tanaka R; Hunt VL; Liu D; Tsuyama K; Maeda Y; Namai S; Kumagai R; Tracey A; Holroyd N; Doyle SR; Woodruff GC; Murase K; Kitazume H; Chai C; Akagi A; Panda O; Ke HM; Schroeder FC; Wang J; Berriman M; Sternberg PW; Sugimoto A; Kikuchi T
    Nat Commun; 2018 Aug; 9(1):3216. PubMed ID: 30097582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis.
    Harris LJ; Baillie DL; Rose AM
    Nucleic Acids Res; 1988 Jul; 16(13):5991-8. PubMed ID: 2840637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large close relative of C. elegans is slow-developing but not long-lived.
    Woodruff GC; Johnson E; Phillips PC
    BMC Evol Biol; 2019 Mar; 19(1):74. PubMed ID: 30866802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.
    Xia A; Sharakhova MV; Leman SC; Tu Z; Bailey JA; Smith CD; Sharakhov IV
    PLoS One; 2010 May; 5(5):e10592. PubMed ID: 20485676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila.
    Coghlan A; Wolfe KH
    Genome Res; 2002 Jun; 12(6):857-67. PubMed ID: 12045140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.
    Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N
    Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massive expansion of sex-specific SNPs, transposon-related elements, and neocentromere formation shape the young W-chromosome from the mosquitofish Gambusia affinis.
    Müller S; Du K; Guiguen Y; Pichler M; Nakagawa S; Stöck M; Schartl M; Lamatsch DK
    BMC Biol; 2023 May; 21(1):109. PubMed ID: 37189152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.