These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32359241)

  • 41. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Word segmentation from noise-band vocoded speech.
    Grieco-Calub TM; Simeon KM; Snyder HE; Lew-Williams C
    Lang Cogn Neurosci; 2017; 32(10):1344-1356. PubMed ID: 29977950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Divided listening in the free field becomes asymmetric when acoustic cues are limited.
    Fumero MJ; Marrufo-Pérez MI; Eustaquio-Martín A; Lopez-Poveda EA
    Hear Res; 2022 Mar; 416():108444. PubMed ID: 35078133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interdependence of linguistic and indexical speech perception skills in school-age children with early cochlear implantation.
    Geers AE; Davidson LS; Uchanski RM; Nicholas JG
    Ear Hear; 2013 Sep; 34(5):562-74. PubMed ID: 23652814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of consonant landmarks to speech recognition in simulated acoustic-electric hearing.
    Chen F; Loizou PC
    Ear Hear; 2010 Apr; 31(2):259-67. PubMed ID: 20081538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-compression thresholds for Mandarin sentences in normal-hearing and cochlear implant listeners.
    Meng Q; Wang X; Cai Y; Kong F; Buck AN; Yu G; Zheng N; Schnupp JWH
    Hear Res; 2019 Mar; 374():58-68. PubMed ID: 30732921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of speech degradation on top-down repair: phonemic restoration with simulations of cochlear implants and combined electric-acoustic stimulation.
    Başkent D
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):683-92. PubMed ID: 22569838
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recognition of emotional prosody by Mandarin-speaking adults with cochlear implants.
    Pak CL; Katz WF
    J Acoust Soc Am; 2019 Aug; 146(2):EL165. PubMed ID: 31472572
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Intelligibility of Interrupted Speech: Cochlear Implant Users and Normal Hearing Listeners.
    Bhargava P; Gaudrain E; Başkent D
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):475-91. PubMed ID: 27090115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Sound Quality of Cochlear Implants: Studies With Single-sided Deaf Patients.
    Dorman MF; Natale SC; Butts AM; Zeitler DM; Carlson ML
    Otol Neurotol; 2017 Sep; 38(8):e268-e273. PubMed ID: 28806337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Beneficial acoustic speech cues for cochlear implant users with residual acoustic hearing.
    Visram AS; Azadpour M; Kluk K; McKay CM
    J Acoust Soc Am; 2012 May; 131(5):4042-50. PubMed ID: 22559377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing.
    Jahn KN; DiNino M; Arenberg JG
    Ear Hear; 2019; 40(2):295-311. PubMed ID: 29927780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustic Context Alters Vowel Categorization in Perception of Noise-Vocoded Speech.
    Stilp CE
    J Assoc Res Otolaryngol; 2017 Jun; 18(3):465-481. PubMed ID: 28281035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Weighting of Prosodic and Lexical-Semantic Cues for Emotion Identification in Spectrally Degraded Speech and With Cochlear Implants.
    Richter ME; Chatterjee M
    Ear Hear; 2021 Nov-Dec 01; 42(6):1727-1740. PubMed ID: 34294630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The representation of noise vocoded speech in the auditory nerve of the chinchilla: physiological correlates of the perception of spectrally reduced speech.
    Loebach JL; Wickesberg RE
    Hear Res; 2006 Mar; 213(1-2):130-44. PubMed ID: 16497455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Factors affecting masking release in cochlear-implant vocoded speech.
    Li N; Loizou PC
    J Acoust Soc Am; 2009 Jul; 126(1):338-46. PubMed ID: 19603890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.