These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32359241)

  • 81. Age-Related Differences in the Processing of Temporal Envelope and Spectral Cues in a Speech Segment.
    Goupell MJ; Gaskins CR; Shader MJ; Walter EP; Anderson S; Gordon-Salant S
    Ear Hear; 2017; 38(6):e335-e342. PubMed ID: 28562426
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Cochlear Implants Int; 2017 Nov; 18(6):324-334. PubMed ID: 28793847
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The effect of increased channel interaction on speech perception with cochlear implants.
    Goehring T; Archer-Boyd AW; Arenberg JG; Carlyon RP
    Sci Rep; 2021 May; 11(1):10383. PubMed ID: 34001987
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improving speech-in-noise recognition for children with hearing loss: potential effects of language abilities, binaural summation, and head shadow.
    Nittrouer S; Caldwell-Tarr A; Tarr E; Lowenstein JH; Rice C; Moberly AC
    Int J Audiol; 2013 Aug; 52(8):513-25. PubMed ID: 23834373
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Perceptual learning of noise vocoded words: effects of feedback and lexicality.
    Hervais-Adelman A; Davis MH; Johnsrude IS; Carlyon RP
    J Exp Psychol Hum Percept Perform; 2008 Apr; 34(2):460-74. PubMed ID: 18377182
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.
    Staisloff HE; Lee DH; Aronoff JM
    Hear Res; 2016 Jul; 337():59-64. PubMed ID: 27208791
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Speech perception in children with cochlear implants: effects of lexical difficulty, talker variability, and word length.
    Kirk KI; Hay-McCutcheon M; Sehgal ST; Miyamoto RT
    Ann Otol Rhinol Laryngol Suppl; 2000 Dec; 185():79-81. PubMed ID: 11141016
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Effects of introducing low-frequency harmonics in the perception of vocoded telephone speech.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2010 Sep; 128(3):1280-9. PubMed ID: 20815463
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations.
    Carroll J; Zeng FG
    Hear Res; 2007 Sep; 231(1-2):42-53. PubMed ID: 17604581
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The Impact of Spectral and Temporal Degradation on Vocoded Speech Recognition in Early-Blind Individuals.
    Choi HJ; Kyong JS; Lee JH; Han SH; Shim HJ
    eNeuro; 2024 May; 11(5):. PubMed ID: 38811162
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Speech Perception with Spectrally Non-overlapping Maskers as Measure of Spectral Resolution in Cochlear Implant Users.
    O'Neill ER; Kreft HA; Oxenham AJ
    J Assoc Res Otolaryngol; 2019 Apr; 20(2):151-167. PubMed ID: 30456730
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effects of spectral shifting on speech perception in noise.
    Li T; Fu QJ
    Hear Res; 2010 Dec; 270(1-2):81-8. PubMed ID: 20868733
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception.
    Goehring T; Archer-Boyd A; Deeks JM; Arenberg JG; Carlyon RP
    J Assoc Res Otolaryngol; 2019 Aug; 20(4):431-448. PubMed ID: 31161338
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Gender identification in younger and older adults: use of spectral and temporal cues in noise-vocoded speech.
    Schvartz KC; Chatterjee M
    Ear Hear; 2012; 33(3):411-20. PubMed ID: 22237163
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effects of noise vocoding on speech quality perception.
    Anderson MC; Arehart KH; Kates JM
    Hear Res; 2014 Mar; 309():75-83. PubMed ID: 24333929
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sleep-Based Memory Consolidation Stabilizes Perceptual Learning of Noise-Vocoded Speech.
    Drouin JR; Zysk VA; Myers EB; Theodore RM
    J Speech Lang Hear Res; 2023 Feb; 66(2):720-734. PubMed ID: 36668820
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A chimpanzee recognizes synthetic speech with significantly reduced acoustic cues to phonetic content.
    Heimbauer LA; Beran MJ; Owren MJ
    Curr Biol; 2011 Jul; 21(14):1210-4. PubMed ID: 21723125
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of spectral degradation on speech intelligibility and cortical representation.
    Choi HJ; Kyong JS; Won JH; Shim HJ
    Front Neurosci; 2024; 18():1368641. PubMed ID: 38646607
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Cochlear-implant simulated spectral degradation attenuates emotional responses to environmental sounds.
    Jahn KN; Wiegand-Shahani BM; Moturi V; Kashiwagura ST; Doak KR
    Int J Audiol; 2024 Aug; ():1-7. PubMed ID: 39146030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.