These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32359322)

  • 1. Influence of bilateral cochlear implants on vocal control.
    Kirchner A; Loucks TM; Abbs E; Shi K; Yu JW; Aronoff JM
    J Acoust Soc Am; 2020 Apr; 147(4):2423. PubMed ID: 32359322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory Phonation Monitoring in Prelingual and Postlingual Deaf Patients after Cochlear Implantation.
    Albera A; Puglisi GE; Astolfi A; Riva G; Cassandro C; Mozzanica F; Canale A
    Audiol Neurootol; 2023; 28(1):52-62. PubMed ID: 36195076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitch Accuracy of Vocal Singing in Deaf Children With Bimodal Hearing and Bilateral Cochlear Implants.
    Xu L; Yang J; Hahn E; Uchanski R; Davidson L
    Ear Hear; 2022 Jul-Aug 01; 43(4):1336-1346. PubMed ID: 34923555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users.
    Gaudrain E; Başkent D
    Ear Hear; 2018; 39(2):226-237. PubMed ID: 28799983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear Implant Users' Vocal Control CorrelatesAcross Tasks.
    Abbs E; Aronoff JM; Kirchner A; O'Brien E; Harmon B
    J Voice; 2020 May; 34(3):490.e7-490.e10. PubMed ID: 30447798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors Affecting Bimodal Benefit in Pediatric Mandarin-Speaking Chinese Cochlear Implant Users.
    Liu YW; Tao DD; Chen B; Cheng X; Shu Y; Galvin JJ; Fu QJ
    Ear Hear; 2019; 40(6):1316-1327. PubMed ID: 30882534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Audio-vocal responses elicited in adult cochlear implant users.
    Loucks TM; Suneel D; Aronoff JM
    J Acoust Soc Am; 2015 Oct; 138(4):EL393-8. PubMed ID: 26520350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prelinguistic Vocal Development in Children With Cochlear Implants: A Systematic Review.
    McDaniel J; Gifford RH
    Ear Hear; 2020; 41(5):1064-1076. PubMed ID: 32053545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech intelligibility and subjective benefit in single-sided deaf adults after cochlear implantation.
    Finke M; Strauß-Schier A; Kludt E; Büchner A; Illg A
    Hear Res; 2017 May; 348():112-119. PubMed ID: 28286233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When singing with cochlear implants, are two ears worse than one for perilingually/postlingually deaf individuals?
    Aronoff JM; Kirchner A; Abbs E; Harmon B
    J Acoust Soc Am; 2018 Jun; 143(6):EL503. PubMed ID: 29960471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users.
    Nogueira W; Boghdady NE; Langner F; Gaudrain E; Başkent D
    Trends Hear; 2021; 25():23312165211030166. PubMed ID: 34461780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifting Fundamental Frequency in Simulated Electric-Acoustic Listening: Effects of F0 Variation.
    Brown CA; Helms Tillery K; Apoux F; Doyle NM; Bacon SP
    Ear Hear; 2016; 37(1):e18-25. PubMed ID: 26565786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voice analysis of postlingually deaf adults pre- and postcochlear implantation.
    Ubrig MT; Goffi-Gomez MV; Weber R; Menezes MH; Nemr NK; Tsuji DH; Tsuji RK
    J Voice; 2011 Nov; 25(6):692-9. PubMed ID: 21367577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.
    Dincer D'Alessandro H; Ballantyne D; Boyle PJ; De Seta E; DeVincentiis M; Mancini P
    Ear Hear; 2018; 39(4):679-686. PubMed ID: 29194080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants.
    Geurts L; Wouters J
    J Acoust Soc Am; 2001 Feb; 109(2):713-26. PubMed ID: 11248975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Cochlear Implantation Allows Deaf Children to Control Voice Pitch and Loudness independently.
    Yamazaki H; Suehiro A; Ueda Y; Kondo K; Ishida A; Yamamoto N; Takagi A; Omori K
    Otol Neurotol; 2022 Jan; 43(1):e56-e63. PubMed ID: 34889842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter-Specific Morphing Reveals Contributions of Timbre and Fundamental Frequency Cues to the Perception of Voice Gender and Age in Cochlear Implant Users.
    Skuk VG; Kirchen L; Oberhoffner T; Guntinas-Lichius O; Dobel C; Schweinberger SR
    J Speech Lang Hear Res; 2020 Sep; 63(9):3155-3175. PubMed ID: 32881631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Vocal Emotions Produced by Children With Cochlear Implants Are Perceived by Their Hearing Peers.
    Damm SA; Sis JL; Kulkarni AM; Chatterjee M
    J Speech Lang Hear Res; 2019 Oct; 62(10):3728-3740. PubMed ID: 31589545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameter-Specific Morphing Reveals Contributions of Timbre to the Perception of Vocal Emotions in Cochlear Implant Users.
    von Eiff CI; Skuk VG; Zäske R; Nussbaum C; Frühholz S; Feuer U; Guntinas-Lichius O; Schweinberger SR
    Ear Hear; 2022 Jul-Aug 01; 43(4):1178-1188. PubMed ID: 34999594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.