These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32359330)

  • 1. A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx.
    Geng B; Pham N; Xue Q; Zheng X
    J Acoust Soc Am; 2020 Apr; 147(4):2597. PubMed ID: 32359330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional anatomic characterization of the canine laryngeal abductor and adductor musculature.
    Mineck CW; Tayama N; Chan R; Titze IR
    Ann Otol Rhinol Laryngol; 2000 May; 109(5):505-13. PubMed ID: 10823482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape.
    Wu L; Zhang Z
    J Acoust Soc Am; 2019 Dec; 146(6):4190. PubMed ID: 31893687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hirano's cover-body model and its unique laryngeal postures revisited.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2018 Jun; 128(6):1412-1418. PubMed ID: 29152744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonation Analysis Combined with 3D Reconstruction of the Thyroarytenoid Muscle in Aged Ovine Ex Vivo Larynx Models.
    Gerstenberger C; Döllinger M; Kniesburges S; Bubalo V; Karbiener M; Schlager H; Sadeghi H; Wendler O; Gugatschka M
    J Voice; 2018 Sep; 32(5):517-524. PubMed ID: 28964638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Vocal Fold Morphology During Singing Over Two Octaves.
    Unteregger F; Wagner P; Honegger F; Potthast S; Zwicky S; Storck C
    J Voice; 2020 Mar; 34(2):165-169. PubMed ID: 30266281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric characterization of the laryngeal cartilage framework for the purpose of biomechanical modeling.
    Tayama N; Chan RW; Kaga K; Titze IR
    Ann Otol Rhinol Laryngol; 2001 Dec; 110(12):1154-61. PubMed ID: 11768707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional model of vocal fold abduction/adduction.
    Hunter EJ; Titze IR; Alipour F
    J Acoust Soc Am; 2004 Apr; 115(4):1747-59. PubMed ID: 15101653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional definitions of vocal fold geometry for laryngeal biomechanical modeling.
    Tayama N; Chan RW; Kaga K; Titze IR
    Ann Otol Rhinol Laryngol; 2002 Jan; 111(1):83-92. PubMed ID: 11800376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrophy of the posterior cricoarytenoid muscle as an indicator of recurrent laryngeal nerve palsy.
    Romo LV; Curtin HD
    AJNR Am J Neuroradiol; 1999 Mar; 20(3):467-71. PubMed ID: 10219413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis.
    Heaton JT; Kobler JB; Otten DM; Hillman RE; Zeitels SM
    Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):53S-70S. PubMed ID: 30843434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonographic examination of the pharynx and larynx of the normal dog.
    Bray JP; Lipscombe VJ; White RA; Rudorf H
    Vet Radiol Ultrasound; 1998; 39(6):566-71. PubMed ID: 9845199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laryngeal muscular control of vocal fold posturing: Numerical modeling and experimental validation.
    Yin J; Zhang Z
    J Acoust Soc Am; 2016 Sep; 140(3):EL280. PubMed ID: 27914396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal fold medialization by surgical augmentation versus arytenoid adduction in the in vivo canine model.
    Green DC; Berke GS; Ward PH
    Ann Otol Rhinol Laryngol; 1991 Apr; 100(4 Pt 1):280-7. PubMed ID: 2018285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.