BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32360378)

  • 1. Repeated norepinephrine receptor stimulation in the BNST induces sensorimotor gating deficits via corticotropin releasing factor.
    Rajbhandari AK; Bakshi VP
    Neuropharmacology; 2020 Aug; 172():108090. PubMed ID: 32360378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator Stress-Induced CRF Release Causes Enduring Sensitization of Basolateral Amygdala Norepinephrine Systems that Promote PTSD-Like Startle Abnormalities.
    Rajbhandari AK; Baldo BA; Bakshi VP
    J Neurosci; 2015 Oct; 35(42):14270-85. PubMed ID: 26490866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enduring sensorimotor gating abnormalities following predator exposure or corticotropin-releasing factor in rats: a model for PTSD-like information-processing deficits?
    Bakshi VP; Alsene KM; Roseboom PH; Connors EE
    Neuropharmacology; 2012 Feb; 62(2):737-48. PubMed ID: 21288473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete forebrain neuronal networks supporting noradrenergic regulation of sensorimotor gating.
    Alsene KM; Rajbhandari AK; Ramaker MJ; Bakshi VP
    Neuropsychopharmacology; 2011 Apr; 36(5):1003-14. PubMed ID: 21248721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Intermittent Ethanol and Acute Stress Similarly Modulate BNST CRF Neuron Activity via Noradrenergic Signaling.
    Snyder AE; Salimando GJ; Winder DG; Silberman Y
    Alcohol Clin Exp Res; 2019 Aug; 43(8):1695-1701. PubMed ID: 31141179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local repeated corticotropin-releasing factor infusion exacerbates anxiety- and fear-related behavior: differential involvement of the basolateral amygdala and medial prefrontal cortex.
    Bijlsma EY; van Leeuwen ML; Westphal KG; Olivier B; Groenink L
    Neuroscience; 2011 Jan; 173():82-92. PubMed ID: 21093544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttraining infusion of norepinephrine and corticotropin releasing factor into the bed nucleus of the stria terminalis enhanced retention in an inhibitory avoidance task.
    Liang KC; Chen HC; Chen DY
    Chin J Physiol; 2001 Mar; 44(1):33-43. PubMed ID: 11403518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between corticotropin-releasing factor and the serotonin 1A receptor system on acoustic startle amplitude and prepulse inhibition of the startle response in two rat strains.
    Conti LH
    Neuropharmacology; 2012 Jan; 62(1):256-63. PubMed ID: 21835187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity.
    Gresack JE; Risbrough VB
    Int J Neuropsychopharmacol; 2011 Oct; 14(9):1179-94. PubMed ID: 21205416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors.
    Sink KS; Chung A; Ressler KJ; Davis M; Walker DL
    Behav Brain Res; 2013 Apr; 243():286-93. PubMed ID: 23376701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restraint stress-induced reduction in prepulse inhibition in Brown Norway rats: role of the CRF2 receptor.
    Sutherland JE; Conti LH
    Neuropharmacology; 2011 Mar; 60(4):561-71. PubMed ID: 21185316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine.
    Alsene KM; Fallace K; Bakshi VP
    Neuropsychopharmacology; 2010 Nov; 35(12):2346-56. PubMed ID: 20686455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat.
    Tejeda HA; Chefer VI; Zapata A; Shippenberg TS
    Psychopharmacology (Berl); 2010 Jun; 210(2):231-40. PubMed ID: 20232058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents.
    Douma TN; Millan MJ; Boulay D; Griebel G; Verdouw PM; Westphal KG; Olivier B; Groenink L
    Psychopharmacology (Berl); 2014 Apr; 231(7):1289-303. PubMed ID: 24186076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell type-specific modifications of corticotropin-releasing factor (CRF) and its type 1 receptor (CRF1) on startle behavior and sensorimotor gating.
    Flandreau E; Risbrough V; Lu A; Ableitner M; Geyer MA; Holsboer F; Deussing JM
    Psychoneuroendocrinology; 2015 Mar; 53():16-28. PubMed ID: 25575243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders.
    Snyder AE; Silberman Y
    Neuropharmacology; 2021 Dec; 201():108814. PubMed ID: 34624301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of restraint stress on prepulse inhibition and on corticotropin-releasing factor (CRF) and CRF receptor gene expression in Wistar-Kyoto and Brown Norway rats.
    Sutherland JE; Burian LC; Covault J; Conti LH
    Pharmacol Biochem Behav; 2010 Dec; 97(2):227-38. PubMed ID: 20709096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological stimulation of locus coeruleus reveals a new antipsychotic-responsive pathway for deficient sensorimotor gating.
    Alsene KM; Bakshi VP
    Neuropsychopharmacology; 2011 Jul; 36(8):1656-67. PubMed ID: 21508929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproate improves prepulse inhibition deficits induced by corticotropin-releasing factor independent of GABA(A) and GABA(B) receptor activation.
    Douma TN; Millan MJ; Verdouw PM; Oosting RS; Olivier B; Groenink L
    Neuropharmacology; 2014 Apr; 79():66-74. PubMed ID: 24211652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticotropin-releasing factor (CRF) sensitization of ethanol withdrawal-induced anxiety-like behavior is brain site specific and mediated by CRF-1 receptors: relation to stress-induced sensitization.
    Huang MM; Overstreet DH; Knapp DJ; Angel R; Wills TA; Navarro M; Rivier J; Vale W; Breese GR
    J Pharmacol Exp Ther; 2010 Jan; 332(1):298-307. PubMed ID: 19843974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.