BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32360530)

  • 1. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs.
    Sohraby F; Aryapour H
    Semin Cancer Biol; 2021 Jan; 68():249-257. PubMed ID: 32360530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation.
    Sohraby F; Bagheri M; Aryapour H
    Methods Mol Biol; 2019; 1903():23-43. PubMed ID: 30547434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Virtual Screening Optimization for Shotgun Drug Repurposing Using the CANDO Platform.
    Hudson ML; Samudrala R
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete reconstruction of dasatinib unbinding pathway from c-Src kinase by supervised molecular dynamics simulation method; assessing efficiency and trustworthiness of the method.
    Sohraby F; Javaheri Moghadam M; Aliyar M; Aryapour H
    J Biomol Struct Dyn; 2022; 40(23):12535-12545. PubMed ID: 34472425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets.
    Mottini C; Napolitano F; Li Z; Gao X; Cardone L
    Semin Cancer Biol; 2021 Jan; 68():59-74. PubMed ID: 31562957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine and deep learning approaches for cancer drug repurposing.
    Issa NT; Stathias V; Schürer S; Dakshanamurthy S
    Semin Cancer Biol; 2021 Jan; 68():132-142. PubMed ID: 31904426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems biology based drug repositioning for development of cancer therapy.
    Turanli B; Altay O; Borén J; Turkez H; Nielsen J; Uhlen M; Arga KY; Mardinoglu A
    Semin Cancer Biol; 2021 Jan; 68():47-58. PubMed ID: 31568815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach.
    Sherin DR; Manojkumar TK
    Sci Rep; 2021 Aug; 11(1):16251. PubMed ID: 34376738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repurposing old drugs to fight multidrug resistant cancers.
    Dinić J; Efferth T; García-Sosa AT; Grahovac J; Padrón JM; Pajeva I; Rizzolio F; Saponara S; Spengler G; Tsakovska I
    Drug Resist Updat; 2020 Sep; 52():100713. PubMed ID: 32615525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors.
    Phatak SS; Zhang S
    Pac Symp Biocomput; 2013; ():29-40. PubMed ID: 23424109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repurposing for cancer therapy, easier said than done.
    Gonzalez-Fierro A; Dueñas-González A
    Semin Cancer Biol; 2021 Jan; 68():123-131. PubMed ID: 31877340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer Drug Discovery By Structure-Based Repositioning Approach.
    Modh DH; Kulkarni VM
    Mini Rev Med Chem; 2024; 24(1):60-91. PubMed ID: 37165589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning liabilities into opportunities: Off-target based drug repurposing in cancer.
    Palve V; Liao Y; Remsing Rix LL; Rix U
    Semin Cancer Biol; 2021 Jan; 68():209-229. PubMed ID: 32044472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a Pipeline Using Disease-Disease Associations for Computational Drug Repurposing.
    Balasundaram P; Kanagavelu R; James N; Maiti S; Veerappapillai S; Karuppaswamy R
    Methods Mol Biol; 2019; 1903():129-148. PubMed ID: 30547440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms.
    Jung JH; Hwang J; Kim JH; Sim DY; Im E; Park JE; Park WY; Shim BS; Kim B; Kim SH
    Semin Cancer Biol; 2021 Jan; 68():164-174. PubMed ID: 31883914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches.
    Ahmed F; Kang IS; Kim KH; Asif A; Rahim CSA; Samantasinghar A; Memon FH; Choi KH
    J Med Virol; 2023 Apr; 95(4):e28693. PubMed ID: 36946499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Structure-Based Drug Design (HT-SBDD) Using Drug Docking, Fragment Molecular Orbital Calculations, and Molecular Dynamic Techniques.
    Martin RL; Heifetz A; Bodkin MJ; Townsend-Nicholson A
    Methods Mol Biol; 2024; 2716():293-306. PubMed ID: 37702945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel drug repurposing approach for non-small cell lung cancer using deep learning.
    Li B; Dai C; Wang L; Deng H; Li Y; Guan Z; Ni H
    PLoS One; 2020; 15(6):e0233112. PubMed ID: 32525938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.