BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32360568)

  • 21. Pathologist-level classification of histopathological melanoma images with deep neural networks.
    Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ
    Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weakly Supervised Framework for Cancer Region Detection of Hepatocellular Carcinoma in Whole-Slide Pathologic Images Based on Multiscale Attention Convolutional Neural Network.
    Diao S; Tian Y; Hu W; Hou J; Lambo R; Zhang Z; Xie Y; Nie X; Zhang F; Racoceanu D; Qin W
    Am J Pathol; 2022 Mar; 192(3):553-563. PubMed ID: 34896390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Pathological diagnosis of lung cancer based on deep transfer learning].
    Zhao D; Che NY; Song ZG; Liu CC; Wang L; Shi HY; Dong YJ; Lin HF; Mu J; Ying L; Yang QC; Gao YN; Chen WS; Wang SH; Xu W; Jin ML
    Zhonghua Bing Li Xue Za Zhi; 2020 Nov; 49(11):1120-1125. PubMed ID: 33152815
    [No Abstract]   [Full Text] [Related]  

  • 24. 3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning.
    Daoud B; Morooka K; Kurazume R; Leila F; Mnejja W; Daoud J
    Comput Med Imaging Graph; 2019 Oct; 77():101644. PubMed ID: 31426004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of pulp exposure risk of carious pulpitis based on deep learning.
    Wang L; Wu F; Xiao M; Chen YX; Wu L
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2023 Apr; 41(2):218-224. PubMed ID: 37056189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the feasibility of synthetic MRI in the differential diagnosis of non-keratinising nasopharyngeal carcinoma and benign hyperplasia using different contoured methods for delineation of the region of interest.
    Meng T; He H; Liu H; Lv X; Huang C; Zhong L; Liu K; Qian L; Ke L; Xie C
    Clin Radiol; 2021 Mar; 76(3):238.e9-238.e15. PubMed ID: 33213835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.
    Zhang B; He X; Ouyang F; Gu D; Dong Y; Zhang L; Mo X; Huang W; Tian J; Zhang S
    Cancer Lett; 2017 Sep; 403():21-27. PubMed ID: 28610955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning.
    Song Z; Zou S; Zhou W; Huang Y; Shao L; Yuan J; Gou X; Jin W; Wang Z; Chen X; Ding X; Liu J; Yu C; Ku C; Liu C; Sun Z; Xu G; Wang Y; Zhang X; Wang D; Wang S; Xu W; Davis RC; Shi H
    Nat Commun; 2020 Aug; 11(1):4294. PubMed ID: 32855423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic Nasopharyngeal Carcinoma Segmentation Using Fully Convolutional Networks with Auxiliary Paths on Dual-Modality PET-CT Images.
    Zhao L; Lu Z; Jiang J; Zhou Y; Wu Y; Feng Q
    J Digit Imaging; 2019 Jun; 32(3):462-470. PubMed ID: 30719587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Same same but different: A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations.
    Kubach J; Muhlebner-Fahrngruber A; Soylemezoglu F; Miyata H; Niehusmann P; Honavar M; Rogerio F; Kim SH; Aronica E; Garbelli R; Vilz S; Popp A; Walcher S; Neuner C; Scholz M; Kuerten S; Schropp V; Roeder S; Eichhorn P; Eckstein M; Brehmer A; Kobow K; Coras R; Blumcke I; Jabari S
    Epilepsia; 2020 Mar; 61(3):421-432. PubMed ID: 32080846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated classification of histopathology images using transfer learning.
    Talo M
    Artif Intell Med; 2019 Nov; 101():101743. PubMed ID: 31813483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Which data subset should be augmented for deep learning? a simulation study using urothelial cell carcinoma histopathology images.
    Ameen YA; Badary DM; Abonnoor AEI; Hussain KF; Sewisy AA
    BMC Bioinformatics; 2023 Mar; 24(1):75. PubMed ID: 36869300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.
    Zhao Z; Deng Y; Zhang Y; Zhang Y; Zhang X; Shao L
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):286. PubMed ID: 31888592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting Intracranial Hemorrhage with Deep Learning.
    Majumdar A; Brattain L; Telfer B; Farris C; Scalera J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():583-587. PubMed ID: 30440464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Deep Learning Convolutional Neural Network Can Recognize Common Patterns of Injury in Gastric Pathology.
    Martin DR; Hanson JA; Gullapalli RR; Schultz FA; Sethi A; Clark DP
    Arch Pathol Lab Med; 2020 Mar; 144(3):370-378. PubMed ID: 31246112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning-based recurrence detector on magnetic resonance scans in nasopharyngeal carcinoma: A multicenter study.
    Deng Y; Huang Y; Jing B; Wu H; Qiu W; Chen H; Li B; Guo X; Xie C; Sun Y; Dai X; Lv X; Li C; Ke L
    Eur J Radiol; 2023 Nov; 168():111084. PubMed ID: 37722143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.