BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3236064)

  • 1. Electrical activation of the pocket scratch central pattern generator in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1988 Dec; 60(6):2122-37. PubMed ID: 3236064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle.
    Mortin LI; Stein PS
    J Comp Neurol; 1990 May; 295(4):515-29. PubMed ID: 2358518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1990 Oct; 64(4):1134-48. PubMed ID: 2258738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns.
    Robertson GA; Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1517-34. PubMed ID: 4009231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle.
    Mortin LI; Stein PS
    J Neurosci; 1989 Jul; 9(7):2285-96. PubMed ID: 2746329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three forms of the scratch reflex in the spinal turtle: movement analyses.
    Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1501-16. PubMed ID: 4009230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle.
    Currie SN; Stein PS
    Brain Res; 1992 May; 581(1):91-100. PubMed ID: 1354009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interruptions of fictive scratch motor rhythms by activation of cutaneous flexion reflex afferents in the turtle.
    Currie SN; Stein PS
    J Neurosci; 1989 Feb; 9(2):488-96. PubMed ID: 2918373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically evoked fictive swimming in the low-spinal immobilized turtle.
    Juranek J; Currie SN
    J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle.
    Stein PS; Camp AW; Robertson GA; Mortin LI
    J Neurosci; 1986 Aug; 6(8):2259-66. PubMed ID: 3746408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5089-104. PubMed ID: 8046470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle.
    Robertson GA; Stein PS
    J Physiol; 1988 Oct; 404():101-28. PubMed ID: 3253428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycinergic inhibition contributes to the generation of rostral scratch motor patterns in the turtle spinal cord.
    Currie SN; Lee S
    J Neurosci; 1997 May; 17(9):3322-33. PubMed ID: 9096165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Jan; 83(1):156-65. PubMed ID: 10634862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the excitability of the central program generator in the spinal cord of the terrapin Pseudemys scripta elegans.
    Crowe A; Linnartz P
    Comp Biochem Physiol A Comp Physiol; 1985; 81(4):905-9. PubMed ID: 2863079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.