BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32361123)

  • 1. Adrenergic Blockade Promotes Maintenance of Dormancy in Prostate Cancer Through Upregulation of GAS6.
    Decker AM; Decker JT; Jung Y; Cackowski FC; Daignault-Newton S; Morgan TM; Shea LD; Taichman RS
    Transl Oncol; 2020 Jul; 13(7):100781. PubMed ID: 32361123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow.
    Decker AM; Jung Y; Cackowski FC; Yumoto K; Wang J; Taichman RS
    Mol Cancer Res; 2017 Dec; 15(12):1644-1655. PubMed ID: 28814453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblastic protein kinase D1 contributes to the prostate cancer cells dormancy via GAS6-circadian clock signaling.
    Li G; Fan M; Zheng Z; Zhang Y; Zhang Z; Huang Z; Luo W; Zhao W; Lai X; Chen H; Zeng F; Deng F
    Biochim Biophys Acta Mol Cell Res; 2022 Sep; 1869(9):119296. PubMed ID: 35595103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow.
    Jung Y; Decker AM; Wang J; Lee E; Kana LA; Yumoto K; Cackowski FC; Rhee J; Carmeliet P; Buttitta L; Morgan TM; Taichman RS
    Oncotarget; 2016 May; 7(18):25698-711. PubMed ID: 27028863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow.
    Yumoto K; Eber MR; Wang J; Cackowski FC; Decker AM; Lee E; Nobre AR; Aguirre-Ghiso JA; Jung Y; Taichman RS
    Sci Rep; 2016 Nov; 6():36520. PubMed ID: 27819283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway.
    Yu-Lee LY; Yu G; Lee YC; Lin SC; Pan J; Pan T; Yu KJ; Liu B; Creighton CJ; Rodriguez-Canales J; Villalobos PA; Wistuba II; de Nadal E; Posas F; Gallick GE; Lin SH
    Cancer Res; 2018 Jun; 78(11):2911-2924. PubMed ID: 29514796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights of Gas6/TAM in cancer development and therapy.
    Wu G; Ma Z; Hu W; Wang D; Gong B; Fan C; Jiang S; Li T; Gao J; Yang Y
    Cell Death Dis; 2017 Mar; 8(3):e2700. PubMed ID: 28333143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory role of Gas6 in intestinal tumorigenesis.
    Akitake-Kawano R; Seno H; Nakatsuji M; Kimura Y; Nakanishi Y; Yoshioka T; Kanda K; Kawada M; Kawada K; Sakai Y; Chiba T
    Carcinogenesis; 2013 Jul; 34(7):1567-74. PubMed ID: 23430954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men.
    Kuebler U; von Känel R; Heimgartner N; Zuccarella-Hackl C; Stirnimann G; Ehlert U; Wirtz PH
    Psychoneuroendocrinology; 2014 Nov; 49():290-8. PubMed ID: 25128931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis.
    Rui X; Wang L; Pan H; Gu T; Shao S; Leng J
    J Cell Mol Med; 2019 Feb; 23(2):865-876. PubMed ID: 30394665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects and mechanism of norepinephrine on the migration of bone marrow mesenchymal stem cells in mice].
    Kong YN; Jin J; Cheng B
    Zhonghua Shao Shang Za Zhi; 2020 Dec; 36(12):1173-1182. PubMed ID: 33379854
    [No Abstract]   [Full Text] [Related]  

  • 12. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long noncoding RNA GAS6-AS2 sponges microRNA-493, thereby enhancing the malignant characteristics of breast cancer cells via upregulation of FUT4.
    Li W; Jin X; Zhao Y; Dai J; Cai Y
    Pathol Res Pract; 2020 Feb; 216(2):152772. PubMed ID: 31839366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion of brown fat norepinephrine content by acute cold exposure and adrenoceptor blockade.
    Subramanian S; Vollmer RR
    Pharmacol Biochem Behav; 2001 Mar; 68(3):597-602. PubMed ID: 11325417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous fibroblast growth factors maintain viability, promote proliferation, and suppress GADD45alpha and GAS6 transcript content of prostate cancer cells genetically modified to lack endogenous FGF-2.
    Shain SA
    Mol Cancer Res; 2004 Nov; 2(11):653-61. PubMed ID: 15561781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α2-Adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression.
    Lamkin DM; Sung HY; Yang GS; David JM; Ma JC; Cole SW; Sloan EK
    Psychoneuroendocrinology; 2015 Jan; 51():262-70. PubMed ID: 25462899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells.
    Huang Z; Li G; Zhang Z; Gu R; Wang W; Lai X; Cui ZK; Zeng F; Xu S; Deng F
    BMC Cancer; 2019 Nov; 19(1):1142. PubMed ID: 31771535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. lncRNA GAS6-AS1 inhibits progression and glucose metabolism reprogramming in LUAD via repressing E2F1-mediated transcription of GLUT1.
    Luo J; Wang H; Wang L; Wang G; Yao Y; Xie K; Li X; Xu L; Shen Y; Ren B
    Mol Ther Nucleic Acids; 2021 Sep; 25():11-24. PubMed ID: 34141461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norepinephrine and thyrotropin effects on the thyroid in vitro: simultaneous stimulation of iodide organification and antagonism of thyroxine release.
    Maayan ML; Volpert EM; From A
    Endocrinology; 1981 Sep; 109(3):930-4. PubMed ID: 6167436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prothrombotic response to norepinephrine infusion, mimicking norepinephrine stress-reactivity effects, is partly mediated by α-adrenergic mechanisms.
    von Känel R; Heimgartner N; Stutz M; Zuccarella-Hackl C; Hänsel A; Ehlert U; Wirtz PH
    Psychoneuroendocrinology; 2019 Jul; 105():44-50. PubMed ID: 30318393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.