These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32361130)

  • 1. Characterization of phthalates in sink and source materials: Measurement methods and the impact on exposure assessment.
    Yang T; Wang H; Zhang X; Xiong J; Huang S; Koutrakis P
    J Hazard Mater; 2020 Sep; 396():122689. PubMed ID: 32361130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method to measure the gas-phase SVOC concentration adjacent to a material surface.
    Wu Y; Xie M; Cox SS; Marr LC; Little JC
    Indoor Air; 2016 Dec; 26(6):903-912. PubMed ID: 26609785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C(m)-History Method, a Novel Approach to Simultaneously Measure Source and Sink Parameters Important for Estimating Indoor Exposures to Phthalates.
    Cao J; Weschler CJ; Luo J; Zhang Y
    Environ Sci Technol; 2016 Jan; 50(2):825-34. PubMed ID: 26677723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissions of DEHP from vehicle cabin materials: parameter determination, impact factors and exposure analysis.
    Yang T; He Z; Zhang S; Tong L; Cao J; Xiong J
    Environ Sci Process Impacts; 2019 Aug; 21(8):1323-1333. PubMed ID: 31289797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPME-Based C
    Cao J; Liu N; Zhang Y
    Environ Sci Technol; 2017 Aug; 51(16):9137-9145. PubMed ID: 28714305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters.
    Zhang X; Wang H; Xu B; Wang H; Wang Y; Yang T; Tan Y; Xiong J; Liu X
    Environ Int; 2022 Feb; 160():107064. PubMed ID: 34968991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.
    Wei W; Mandin C; Ramalho O
    Chemosphere; 2018 Mar; 195():223-235. PubMed ID: 29268180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the Direct Transfer of SVOCs from Source to Settled Dust: Analytical Model and Key Parameter Determination.
    Wang H; Wang H; Zhang X; Xiong J; Liu X
    Environ Sci Technol; 2022 May; 56(9):5489-5496. PubMed ID: 35442662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment.
    Liang Y; Xu Y
    Environ Sci Technol; 2014 Apr; 48(8):4475-84. PubMed ID: 24654650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general mechanistic model for predicting the fate and transport of phthalates in indoor environments.
    Liang Y; Bi C; Wang X; Xu Y
    Indoor Air; 2019 Jan; 29(1):55-69. PubMed ID: 30339320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.
    Liang Y; Liu X; Allen MR
    Environ Sci Technol; 2018 May; 52(10):5821-5829. PubMed ID: 29671311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers.
    Liu C; Liu Z; Little JC; Zhang Y
    PLoS One; 2013; 8(8):e72445. PubMed ID: 24015246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement methods and impact factors for the key parameters of VOC/SVOC emissions from materials in indoor and vehicular environments: A review.
    Wang H; Xiong J; Wei W
    Environ Int; 2022 Oct; 168():107451. PubMed ID: 35963058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Phthalates on Impervious Indoor Surfaces.
    Wu Y; Eichler CM; Leng W; Cox SS; Marr LC; Little JC
    Environ Sci Technol; 2017 Mar; 51(5):2907-2913. PubMed ID: 28140579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid micro chamber method to measure SVOC emission and transport model parameters.
    Wang C; Eichler CMA; Bi C; Delmaar CJE; Xu Y; Little JC
    Environ Sci Process Impacts; 2023 Apr; 25(4):818-831. PubMed ID: 36897109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of chemical transport in human skin and building material.
    Wang H; Wang H; Wang K; Xiong J; Huang S; Wolfson JM; Koutrakis P
    J Hazard Mater; 2023 Sep; 458():131917. PubMed ID: 37379590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments.
    Liu C; Zhang Y; Weschler CJ
    Sci Total Environ; 2014 Nov; 497-498():401-411. PubMed ID: 25146909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors.
    Raffy G; Mercier F; Glorennec P; Mandin C; Le Bot B
    J Hazard Mater; 2018 Jun; 352():215-227. PubMed ID: 29621676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates.
    Schripp T; Salthammer T; Fauck C; Bekö G; Weschler CJ
    Sci Total Environ; 2014 Oct; 494-495():299-305. PubMed ID: 25058896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical correlations for diffusivity and the partition coefficient for phthalates in PVC materials and modelling emissions of automotive sealants.
    Gilliam MA; van Cura D; Garner G; Seeley A; Sekol R
    Chemosphere; 2022 May; 294():133638. PubMed ID: 35085611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.