BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32361318)

  • 1. FTIR spectroscopy as a novel analytical approach for investigation of glucose transport and glucose transport inhibition studies in transwell in vitro barrier models.
    Rothbauer M; Eilenberger C; Spitz S; Bachmann B; Pajenda J; Schwaighofer A; Höll G; Helmke PS; Kohl Y; Lendl B; Ertl P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118388. PubMed ID: 32361318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inhibitors on glucose transport in malaria (Plasmodium berghei) infected erythrocytes.
    Tripatara A; Yuthavong Y
    Int J Parasitol; 1986 Oct; 16(5):441-6. PubMed ID: 3536772
    [No Abstract]   [Full Text] [Related]  

  • 4. The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices.
    Amato PA; Loizzi RF
    Eur J Cell Biol; 1979 Dec; 20(2):150-5. PubMed ID: 520333
    [No Abstract]   [Full Text] [Related]  

  • 5. [The action of inhibitors of sugar transport phlorizin, phloretin and cytochalasin B in model systems].
    Vasianin SI
    Tsitologiia; 1989 Jan; 31(1):57-65. PubMed ID: 2718259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monosaccharide transport across microvillous membrane of human placenta.
    Johnson LW; Smith CH
    Am J Physiol; 1980 May; 238(5):C160-8. PubMed ID: 6990781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells.
    Vardhana PA; Illsley NP
    Placenta; 2002; 23(8-9):653-60. PubMed ID: 12361684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characteristics of glucose transport across the blood brain barrier and its relation to cerebral glucose metabolism.
    Betz AL; Gilboe DD; Drewes LR
    Adv Exp Med Biol; 1976; 69():133-49. PubMed ID: 782188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-cell ATR-FTIR spectroscopy as a novel bioanalytical tool for cell glucose metabolism research.
    Poonprasartporn A; Chan KLA
    Biochim Biophys Acta Mol Cell Res; 2021 Jun; 1868(7):119024. PubMed ID: 33831457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport across plasma membrane in human platelets.
    Leoncini G; Maresca M
    Ital J Biochem; 1986; 35(5):287-95. PubMed ID: 3804696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hormone-regulated and glucose-sensitive transport of dehydroascorbic acid in immature rat granulosa cells.
    Kodaman PH; Behrman HR
    Endocrinology; 1999 Aug; 140(8):3659-65. PubMed ID: 10433224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose transport in a murine mammary epithelial cell line.
    Bennett BL; Grigor MR; Prosser CG
    Biochem Mol Biol Int; 1997 Jun; 42(2):315-23. PubMed ID: 9238530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation.
    Correia-Branco A; Azevedo CF; Araújo JR; Guimarães JT; Faria A; Keating E; Martel F
    Mol Hum Reprod; 2015 Oct; 21(10):803-15. PubMed ID: 26194608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase.
    Ma TY; Hoa NT; Tran DD; Bui V; Pedram A; Mills S; Merryfield M
    Am J Physiol Gastrointest Liver Physiol; 2000 Nov; 279(5):G875-85. PubMed ID: 11052983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.