BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32362019)

  • 21. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering.
    Sharifzadeh B; Kalbasi R; Jahangiri M; Toghraie D; Karimipour A
    Comput Methods Programs Biomed; 2020 Aug; 192():105442. PubMed ID: 32192998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries.
    Mahalingam A; Gawandalkar UU; Kini G; Buradi A; Araki T; Ikeda N; Nicolaides A; Laird JR; Saba L; Suri JS
    Cardiovasc Diagn Ther; 2016 Jun; 6(3):208-20. PubMed ID: 27280084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models.
    Razavi A; Shirani E; Sadeghi MR
    J Biomech; 2011 Jul; 44(11):2021-30. PubMed ID: 21696742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation.
    Lee SE; Lee SW; Fischer PF; Bassiouny HS; Loth F
    J Biomech; 2008 Aug; 41(11):2551-61. PubMed ID: 18656199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modeling of pulsatile turbulent flow in stenotic vessels.
    Varghese SS; Frankel SH
    J Biomech Eng; 2003 Aug; 125(4):445-60. PubMed ID: 12968569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical computation of blood hemodynamic through constricted human left coronary artery: Pulsatile simulations.
    Pandey R; Kumar M; Srivastav VK
    Comput Methods Programs Biomed; 2020 Dec; 197():105661. PubMed ID: 32738679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional modeling of flow and deformation in idealized mild and moderate arterial vessels.
    Gu X; Yeoh GH; Timchenko V
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1395-408. PubMed ID: 26863528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models.
    Biglarian M; Larimi MM; Afrouzi HH; Moshfegh A; Toghraie D; Javadzadegan A; Rostami S
    Comput Methods Programs Biomed; 2020 Mar; 185():105170. PubMed ID: 31710988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.
    Smith S; Austin S; Wesson GD; Moore CA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():871-4. PubMed ID: 17945604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model.
    Ha H; Lee SJ
    Med Eng Phys; 2014 Jan; 36(1):119-28. PubMed ID: 24210854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulsatile spiral blood flow through arterial stenosis.
    Linge F; Hye MA; Paul MC
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1727-37. PubMed ID: 23477498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of curvature wall on the blood flow in stenosed artery: A computational study.
    Ahamad NA; Kamangar S; Badruddin IA
    Biomed Mater Eng; 2018; 29(3):319-332. PubMed ID: 29578467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical analysis of flow through a severely stenotic carotid artery bifurcation.
    Stroud JS; Berger SA; Saloner D
    J Biomech Eng; 2002 Feb; 124(1):9-20. PubMed ID: 11871610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.