These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32362127)

  • 1. Formation and Properties of a Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed through Molecular Dynamics Simulations.
    Jing H; Wang Y; Desai PR; Ramamurthi KS; Das S
    Langmuir; 2020 May; 36(20):5524-5533. PubMed ID: 32362127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanovesicles Versus Nanoparticle-Supported Lipid Bilayers: Massive Differences in Bilayer Structures and in Diffusivities of Lipid Molecules and Nanoconfined Water.
    Jing H; Wang Y; Desai PR; Ramamurthi KS; Das S
    Langmuir; 2019 Feb; 35(7):2702-2708. PubMed ID: 30685976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of lipid bilayers modeling outer and inner leaflets of plasma membranes of mouse hepatocytes. I. Differences in physicochemical properties between the two leaflets.
    Andoh Y; Hayakawa S; Okazaki S
    J Chem Phys; 2020 Jul; 153(3):035105. PubMed ID: 32716170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature.
    Jing H; Wang Y; Desai PR; Ramamurthi KS; Das S
    PLoS One; 2020; 15(12):e0244460. PubMed ID: 33378379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
    Huang-Zhu CA; Sheavly JK; Chew AK; Patel SJ; Van Lehn RC
    ACS Nano; 2024 Feb; 18(8):6424-6437. PubMed ID: 38354368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the dynamics of molecular self-assembly and the structural analysis of bilayer membranes using coarse-grained molecular dynamics simulations.
    Schindler T; Kröner D; Steinhauser MO
    Biochim Biophys Acta; 2016 Sep; 1858(9):1955-1963. PubMed ID: 27216316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations.
    Perlmutter JD; Sachs JN
    J Am Chem Soc; 2011 May; 133(17):6563-77. PubMed ID: 21473645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations.
    Krylov NA; Pentkovsky VM; Efremov RG
    ACS Nano; 2013 Oct; 7(10):9428-42. PubMed ID: 24070369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the inclusion of hydrophobic nanoparticles into a lipid bilayer.
    Li Y; Gu N
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7616-9. PubMed ID: 21137995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling of lipids and lipid bilayers.
    Lyubartsev AP
    Eur Biophys J; 2005 Dec; 35(1):53-61. PubMed ID: 16133633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of lipid bilayers with supports: a coarse-grained molecular simulation study.
    Xing C; Faller R
    J Phys Chem B; 2008 Jun; 112(23):7086-94. PubMed ID: 18461982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage.
    Oroskar PA; Jameson CJ; Murad S
    Langmuir; 2015 Jan; 31(3):1074-85. PubMed ID: 25549137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer.
    Maftouni N; Amininasab M; Vali M; Ejtehadi M; Kowsari F
    J Membr Biol; 2013 Jan; 246(1):67-73. PubMed ID: 23073731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations.
    Adhikari U; Goliaei A; Tsereteli L; Berkowitz ML
    J Phys Chem B; 2016 Jul; 120(26):5823-30. PubMed ID: 26719970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry.
    Ou L; Corradi V; Tieleman DP; Liang Q
    J Phys Chem B; 2020 Jun; 124(22):4466-4475. PubMed ID: 32392064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.