These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32362429)

  • 1. Hydochar and biochar: Production, physicochemical properties and techno-economic analysis.
    Kumar A; Saini K; Bhaskar T
    Bioresour Technol; 2020 Aug; 310():123442. PubMed ID: 32362429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.
    Tan XF; Liu SB; Liu YG; Gu YL; Zeng GM; Hu XJ; Wang X; Liu SH; Jiang LH
    Bioresour Technol; 2017 Mar; 227():359-372. PubMed ID: 28063759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical, economical, and climate-related aspects of biochar production technologies: a literature review.
    Meyer S; Glaser B; Quicker P
    Environ Sci Technol; 2011 Nov; 45(22):9473-83. PubMed ID: 21961528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review.
    Piccirillo C
    J Environ Manage; 2023 Aug; 339():117896. PubMed ID: 37080100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications.
    Zhang Y; Qin J; Yi Y
    Sci Total Environ; 2021 Apr; 763():144550. PubMed ID: 33373787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can biochar and hydrochar be used as sustainable catalyst for persulfate activation?
    Gasim MF; Lim JW; Low SC; Lin KA; Oh WD
    Chemosphere; 2022 Jan; 287(Pt 4):132458. PubMed ID: 34610377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.
    Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J
    Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of the effect of pyrolysis process parameters on biochar stability.
    Leng L; Huang H
    Bioresour Technol; 2018 Dec; 270():627-642. PubMed ID: 30220436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment.
    Gaur VK; Gautam K; Sharma P; Gupta S; Pandey A; You S; Varjani S
    Environ Res; 2022 Jun; 209():112793. PubMed ID: 35090873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of bone chars derived from bovine parts: Physicochemical properties and copper sorption behavior.
    Wang M; Liu Y; Yao Y; Han L; Liu X
    Sci Total Environ; 2020 Jan; 700():134470. PubMed ID: 31693958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review.
    Xu X; Zhao Y; Sima J; Zhao L; Mašek O; Cao X
    Bioresour Technol; 2017 Oct; 241():887-899. PubMed ID: 28629105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure.
    Cimò G; Kucerik J; Berns AE; Schaumann GE; Alonzo G; Conte P
    J Agric Food Chem; 2014 Feb; 62(8):1912-8. PubMed ID: 24506474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration-a review.
    Sarfraz R; Hussain A; Sabir A; Ben Fekih I; Ditta A; Xing S
    Environ Monit Assess; 2019 Mar; 191(4):251. PubMed ID: 30919093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.
    Brassard P; Godbout S; Raghavan V
    J Environ Manage; 2016 Oct; 181():484-497. PubMed ID: 27420171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental application of biochar: Current status and perspectives.
    Oliveira FR; Patel AK; Jaisi DP; Adhikari S; Lu H; Khanal SK
    Bioresour Technol; 2017 Dec; 246():110-122. PubMed ID: 28863990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications.
    Taskin E; de Castro Bueno C; Allegretta I; Terzano R; Rosa AH; Loffredo E
    Chemosphere; 2019 Oct; 233():422-430. PubMed ID: 31176906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties.
    Gwenzi W; Chaukura N; Mukome FND; Machado S; Nyamasoka B
    J Environ Manage; 2015 Mar; 150():250-261. PubMed ID: 25521347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.
    Takaya CA; Fletcher LA; Singh S; Anyikude KU; Ross AB
    Chemosphere; 2016 Feb; 145():518-27. PubMed ID: 26702555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review.
    Sun X; Atiyeh HK; Li M; Chen Y
    Bioresour Technol; 2020 Jan; 295():122252. PubMed ID: 31669180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox properties of plant biomass-derived black carbon (biochar).
    Klüpfel L; Keiluweit M; Kleber M; Sander M
    Environ Sci Technol; 2014 May; 48(10):5601-11. PubMed ID: 24749810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.